30 Search Results for "Charalampopoulos, Panagiotis"


Document
Longest Common Substring with Gaps and Related Problems

Authors: Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The longest common substring (also known as longest common factor) and longest common subsequence problems are two well-studied classical string problems. The former is solvable in optimal 𝒪(n) time for two strings of length m and n with m ≤ n, and the latter is solvable in 𝒪(nm) time, which is conditionally optimal under the Strong Exponential Time Hypothesis. In this work, we study the problem of longest common factor with gaps, that is, finding a set of at most k matching substrings obeying precedence conditions with maximum total length. For k = 1, this is equivalent to the longest common factor problem, and for k = m, this is equivalent to the longest common subsequence problem. Our work demonstrates that, for constant k, this problem can be solved in strongly subquadratic time, i.e., nm^{1 - Θ(1)}. Motivated by co-linear chaining applications in Computational Biology, we further demonstrate that the longest common factor with gaps results can be extended to the case where the matches are restricted to maximal exact matches (MEMs). To further demonstrate the applicability of our techniques, we show that a similar approach can be used for a restricted version of the episode matching problem where one seeks an ordered set of at most k matches whose concatenation equals a query pattern P and the length of the substring of T containing the matches is minimized. These solutions all run in strongly subquadratic time for constant k.

Cite as

Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan. Longest Common Substring with Gaps and Related Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banerjee_et_al:LIPIcs.ESA.2024.16,
  author =	{Banerjee, Aranya and Gibney, Daniel and Thankachan, Sharma V.},
  title =	{{Longest Common Substring with Gaps and Related Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.16},
  URN =		{urn:nbn:de:0030-drops-210877},
  doi =		{10.4230/LIPIcs.ESA.2024.16},
  annote =	{Keywords: Pattern Matching, Longest Common Subsequence, Episode Matching}
}
Document
Longest Common Extensions with Wildcards: Trade-Off and Applications

Authors: Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the Longest Common Extension (LCE) problem in a string containing wildcards. Wildcards (also called "don't cares" or "holes") are special characters that match any other character in the alphabet, similar to the character "?" in Unix commands or "." in regular expression engines. We consider the problem parametrized by G, the number of maximal contiguous groups of wildcards in the input string. Our main contribution is a simple data structure for this problem that can be built in O(n (G/t) log n) time, occupies O(nG/t) space, and answers queries in O(t) time, for any t ∈ [1 .. G]. Up to the O(log n) factor, this interpolates smoothly between the data structure of Crochemore et al. [JDA 2015], which has O(nG) preprocessing time and space, and O(1) query time, and a simple solution based on the "kangaroo jumping" technique [Landau and Vishkin, STOC 1986], which has O(n) preprocessing time and space, and O(G) query time. By establishing a connection between this problem and Boolean matrix multiplication, we show that our solution is optimal up to subpolynomial factors when G = Ω(n) under a widely believed hypothesis. In addition, we develop a new simple, deterministic and combinatorial algorithm for sparse Boolean matrix multiplication. Finally, we show that our data structure can be used to obtain efficient algorithms for approximate pattern matching and structural analysis of strings with wildcards. First, we consider the problem of pattern matching with k errors (i.e., edit operations) in the setting where both the pattern and the text may contain wildcards. The "kangaroo jumping" technique can be adapted to yield an algorithm for this problem with runtime O(n(k+G)), where G is the total number of maximal contiguous groups of wildcards in the text and the pattern and n is the length of the text. By combining "kangaroo jumping" with a tailor-made data structure for LCE queries, Akutsu [IPL 1995] devised an O(n√{km} polylog m)-time algorithm. We improve on both algorithms when k ≪ G ≪ m by giving an algorithm with runtime O(n(k + √{Gk log n})). Secondly, we give O(n√G log n)-time and O(n)-space algorithms for computing the prefix array, as well as the quantum/deterministic border and period arrays of a string with wildcards. This is an improvement over the O(n√{nlog n})-time algorithms of Iliopoulos and Radoszewski [CPM 2016] when G = O(n / log n).

Cite as

Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya. Longest Common Extensions with Wildcards: Trade-Off and Applications. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ESA.2024.19,
  author =	{Bathie, Gabriel and Charalampopoulos, Panagiotis and Starikovskaya, Tatiana},
  title =	{{Longest Common Extensions with Wildcards: Trade-Off and Applications}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.19},
  URN =		{urn:nbn:de:0030-drops-210904},
  doi =		{10.4230/LIPIcs.ESA.2024.19},
  annote =	{Keywords: Longest common prefix, longest common extension, wildcards, Boolean matrix multiplication, approximate pattern matching, periodicity arrays}
}
Document
Pattern Matching with Mismatches and Wildcards

Authors: Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this work, we address the problem of approximate pattern matching with wildcards. Given a pattern P of length m containing D wildcards, a text T of length n, and an integer k, our objective is to identify all fragments of T within Hamming distance k from P. Our primary contribution is an algorithm with runtime 𝒪(n + (D+k)(G+k)⋅ n/m) for this problem. Here, G ≤ D represents the number of maximal wildcard fragments in P. We derive this algorithm by elaborating in a non-trivial way on the ideas presented by [Charalampopoulos, Kociumaka, and Wellnitz, FOCS'20] for pattern matching with mismatches (without wildcards). Our algorithm improves over the state of the art when D, G, and k are small relative to n. For instance, if m = n/2, k = G = n^{2/5}, and D = n^{3/5}, our algorithm operates in 𝒪(n) time, surpassing the Ω(n^{6/5}) time requirement of all previously known algorithms. In the case of exact pattern matching with wildcards (k = 0), we present a much simpler algorithm with runtime 𝒪(n + DG ⋅ n/m) that clearly illustrates our main technical innovation: the utilisation of positions of P that do not belong to any fragment of P with a density of wildcards much larger than D/m as anchors for the sought (approximate) occurrences. Notably, our algorithm outperforms the best-known 𝒪(n log m)-time FFT-based algorithms of [Cole and Hariharan, STOC'02] and [Clifford and Clifford, IPL'04] if DG = o(m log m). We complement our algorithmic results with a structural characterization of the k-mismatch occurrences of P. We demonstrate that in a text of length 𝒪(m), these occurrences can be partitioned into 𝒪((D+k)(G+k)) arithmetic progressions. Additionally, we construct an infinite family of examples with Ω((D+k)k) arithmetic progressions of occurrences, leveraging a combinatorial result on progression-free sets [Elkin, SODA'10].

Cite as

Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya. Pattern Matching with Mismatches and Wildcards. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ESA.2024.20,
  author =	{Bathie, Gabriel and Charalampopoulos, Panagiotis and Starikovskaya, Tatiana},
  title =	{{Pattern Matching with Mismatches and Wildcards}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.20},
  URN =		{urn:nbn:de:0030-drops-210910},
  doi =		{10.4230/LIPIcs.ESA.2024.20},
  annote =	{Keywords: pattern matching, wildcards, mismatches, Hamming distance}
}
Document
A Textbook Solution for Dynamic Strings

Authors: Zsuzsanna Lipták, Francesco Masillo, and Gonzalo Navarro

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the problem of maintaining a collection of strings while efficiently supporting splits and concatenations on them, as well as comparing two substrings, and computing the longest common prefix between two suffixes. This problem can be solved in optimal time O(log N) whp for the updates and O(1) worst-case time for the queries, where N is the total collection size [Gawrychowski et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay trees (FeST), where both the updates and the substring comparison take O(log n) amortized time, n being the lengths of the strings involved. The longest common prefix of length 𝓁 is computed in O(log n + log²𝓁) amortized time. Our query results are correct whp. Our simpler solution enables other more general updates in O(log n) amortized time, such as reversing a substring and/or mapping its symbols. We can also regard substrings as circular or as their omega extension.

Cite as

Zsuzsanna Lipták, Francesco Masillo, and Gonzalo Navarro. A Textbook Solution for Dynamic Strings. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 86:1-86:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liptak_et_al:LIPIcs.ESA.2024.86,
  author =	{Lipt\'{a}k, Zsuzsanna and Masillo, Francesco and Navarro, Gonzalo},
  title =	{{A Textbook Solution for Dynamic Strings}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{86:1--86:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.86},
  URN =		{urn:nbn:de:0030-drops-211576},
  doi =		{10.4230/LIPIcs.ESA.2024.86},
  annote =	{Keywords: dynamic strings, splay trees, dynamic data structures, LCP, circular strings}
}
Document
Approximate Suffix-Prefix Dictionary Queries

Authors: Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the all-pairs suffix-prefix (APSP) problem [Gusfield et al., Inf. Process. Lett. 1992], we are given a dictionary R of r strings, S₁,…,S_r, of total length n, and we are asked to find the length SPL_{i,j} of the longest string that is both a suffix of S_i and a prefix of S_j, for all i,j ∈ [1..r]. APSP is a classic problem in string algorithms with applications in bioinformatics, especially in sequence assembly. Since r = |R| is typically very large in real-world applications, considering all r² pairs of strings explicitly is prohibitive. This is when the data structure variant of APSP makes sense; in the same spirit as distance oracles computing shortest paths between any two vertices given online. We show how to quickly locate k-approximate matches (under the Hamming or the edit distance) in R using a version of the k-errata tree [Cole et al., STOC 2004] that we introduce. Let SPL^k_{i,j} be the length of the longest suffix of S_i that is at distance at most k from a prefix of S_j. In particular, for any k = 𝒪(1), we show an 𝒪(nlog^k n)-sized data structure to support the following queries: - One-to-One^k(i,j): output SPL^k_{i,j} in 𝒪(log^k nlog log n) time. - Report^k(i,d): output all j ∈ [1..r], such that SPL^k_{i,j} ≥ d, in 𝒪(log^{k}n(log n/log log n+output)) time, where output denotes the size of the output. In fact, our algorithms work for any value of k not just for k = 𝒪(1), but the formulas bounding the complexities get much more complicated for larger values of k.

Cite as

Wiktor Zuba, Grigorios Loukides, Solon P. Pissis, and Sharma V. Thankachan. Approximate Suffix-Prefix Dictionary Queries. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 85:1-85:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zuba_et_al:LIPIcs.MFCS.2024.85,
  author =	{Zuba, Wiktor and Loukides, Grigorios and Pissis, Solon P. and Thankachan, Sharma V.},
  title =	{{Approximate Suffix-Prefix Dictionary Queries}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{85:1--85:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.85},
  URN =		{urn:nbn:de:0030-drops-206416},
  doi =		{10.4230/LIPIcs.MFCS.2024.85},
  annote =	{Keywords: all-pairs suffix-prefix, suffix-prefix queries, suffix tree, k-errata tree}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Bounds for Distinct Quartics

Authors: Panagiotis Charalampopoulos, Paweł Gawrychowski, and Samah Ghazawi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A fundamental concept related to strings is that of repetitions. It has been extensively studied in many versions, from both purely combinatorial and algorithmic angles. One of the most basic questions is how many distinct squares, i.e., distinct strings of the form UU, a string of length n can contain as fragments. It turns out that this is always 𝒪(n), and the bound cannot be improved to sublinear in n [Fraenkel and Simpson, JCTA 1998]. Several similar questions about repetitions in strings have been considered, and by now we seem to have a good understanding of their repetitive structure. For higher-dimensional strings, the basic concept of periodicity has been successfully extended and applied to design efficient algorithms - it is inherently more complex than for regular strings. Extending the notion of repetitions and understanding the repetitive structure of higher-dimensional strings is however far from complete. Quartics were introduced by Apostolico and Brimkov [TCS 2000] as analogues of squares in two dimensions. Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba [ESA 2020] proved that the number of distinct quartics in an n×n 2D string is 𝒪(n²log²n) and that they can be computed in 𝒪(n²log²n) time. Gawrychowski, Ghazawi, and Landau [SPIRE 2021] constructed an infinite family of n×n 2D strings with Ω(n²log n) distinct quartics. This brings the challenge of determining asymptotically tight bounds. Here, we settle both the combinatorial and the algorithmic aspects of this question: the number of distinct quartics in an n×n 2D string is 𝒪(n²log n) and they can be computed in the worst-case optimal 𝒪(n²log n) time. As expected, our solution heavily exploits the periodic structure implied by occurrences of quartics. However, the two-dimensional nature of the problem introduces some technical challenges. Somewhat surprisingly, we overcome the final challenge for the combinatorial bound using a result of Marcus and Tardos [JCTA 2004] for permutation avoidance on matrices.

Cite as

Panagiotis Charalampopoulos, Paweł Gawrychowski, and Samah Ghazawi. Optimal Bounds for Distinct Quartics. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.ICALP.2024.39,
  author =	{Charalampopoulos, Panagiotis and Gawrychowski, Pawe{\l} and Ghazawi, Samah},
  title =	{{Optimal Bounds for Distinct Quartics}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.39},
  URN =		{urn:nbn:de:0030-drops-201823},
  doi =		{10.4230/LIPIcs.ICALP.2024.39},
  annote =	{Keywords: 2D strings, quartics, repetitions, periodicity}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
Maintaining the Size of LZ77 on Semi-Dynamic Strings

Authors: Hideo Bannai, Panagiotis Charalampopoulos, and Jakub Radoszewski

Published in: LIPIcs, Volume 296, 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)


Abstract
We consider the problem of maintaining the size of the LZ77 factorization of a string S of length at most n under the following operations: (a) appending a given letter to S and (b) deleting the first letter of S. Our main result is an algorithm for this problem with amortized update time Õ(√n). As a corollary, we obtain an Õ(n√n)-time algorithm for computing the most LZ77-compressible rotation of a length-n string - a naive approach for this problem would compute the LZ77 factorization of each possible rotation and would thus take quadratic time in the worst case. We also show an Ω(√n) lower bound for the additive sensitivity of LZ77 with respect to the rotation operation. Our algorithm employs dynamic trees to maintain the longest-previous-factor array information and depends on periodicity-based arguments that bound the number of the required updates and enable their efficient computation.

Cite as

Hideo Bannai, Panagiotis Charalampopoulos, and Jakub Radoszewski. Maintaining the Size of LZ77 on Semi-Dynamic Strings. In 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 296, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:LIPIcs.CPM.2024.3,
  author =	{Bannai, Hideo and Charalampopoulos, Panagiotis and Radoszewski, Jakub},
  title =	{{Maintaining the Size of LZ77 on Semi-Dynamic Strings}},
  booktitle =	{35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-326-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{296},
  editor =	{Inenaga, Shunsuke and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2024.3},
  URN =		{urn:nbn:de:0030-drops-201134},
  doi =		{10.4230/LIPIcs.CPM.2024.3},
  annote =	{Keywords: Lempel-Ziv, compression, LZ77, semi-dynamic algorithm, cyclic rotation}
}
Document
Internal Pattern Matching in Small Space and Applications

Authors: Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya

Published in: LIPIcs, Volume 296, 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)


Abstract
In this work, we consider pattern matching variants in small space, that is, in the read-only setting, where we want to bound the space usage on top of storing the strings. Our main contribution is a space-time trade-off for the Internal Pattern Matching (IPM) problem, where the goal is to construct a data structure over a string S of length n that allows one to answer the following type of queries: Compute the occurrences of a fragment P of S inside another fragment T of S, provided that |T| < 2|P|. For any τ ∈ [1 . . n/log² n], we present a nearly-optimal Õ(n/τ)-size data structure that can be built in Õ(n) time using Õ(n/τ) extra space, and answers IPM queries in O(τ+log n log³ log n) time. IPM queries have been identified as a crucial primitive operation for the analysis of algorithms on strings. In particular, the complexities of several recent algorithms for approximate pattern matching are expressed with regards to the number of calls to a small set of primitive operations that include IPM queries; our data structure allows us to port these results to the small-space setting. We further showcase the applicability of our IPM data structure by using it to obtain space-time trade-offs for the longest common substring and circular pattern matching problems in the asymmetric streaming setting.

Cite as

Gabriel Bathie, Panagiotis Charalampopoulos, and Tatiana Starikovskaya. Internal Pattern Matching in Small Space and Applications. In 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 296, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.CPM.2024.4,
  author =	{Bathie, Gabriel and Charalampopoulos, Panagiotis and Starikovskaya, Tatiana},
  title =	{{Internal Pattern Matching in Small Space and Applications}},
  booktitle =	{35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-326-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{296},
  editor =	{Inenaga, Shunsuke and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2024.4},
  URN =		{urn:nbn:de:0030-drops-201148},
  doi =		{10.4230/LIPIcs.CPM.2024.4},
  annote =	{Keywords: internal pattern matching, longest common substring, small-space algorithms}
}
Document
Approximate Circular Pattern Matching Under Edit Distance

Authors: Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the k-Edit Circular Pattern Matching (k-Edit CPM) problem, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions of the substrings of T that are at edit distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos et al. [ESA 2022] presented 𝒪(nk²)-time and 𝒪(nk log³ k)-time solutions for the reporting and decision versions of k-Edit CPM, respectively. Here, we show that the reporting and decision versions of k-Edit CPM can be solved in 𝒪(n+(n/m) k⁶) time and 𝒪(n+(n/m) k⁵ log³ k) time, respectively, thus obtaining the first algorithms with a complexity of the type 𝒪(n+(n/m) poly(k)) for this problem. Notably, our algorithms run in 𝒪(n) time when m = Ω(k⁶) and are superior to the previous respective solutions when m = ω(k⁴). We provide a meta-algorithm that yields efficient algorithms in several other interesting settings, such as when the strings are given in a compressed form (as straight-line programs), when the strings are dynamic, or when we have a quantum computer. We obtain our solutions by exploiting the structure of approximate circular occurrences of P in T, when T is relatively short w.r.t. P. Roughly speaking, either the starting positions of approximate occurrences of rotations of P form 𝒪(k⁴) intervals that can be computed efficiently, or some rotation of P is almost periodic (is at a small edit distance from a string with small period). Dealing with the almost periodic case is the most technically demanding part of this work; we tackle it using properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).

Cite as

Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate Circular Pattern Matching Under Edit Distance. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.STACS.2024.24,
  author =	{Charalampopoulos, Panagiotis and Pissis, Solon P. and Radoszewski, Jakub and Rytter, Wojciech and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Approximate Circular Pattern Matching Under Edit Distance}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{24:1--24:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.24},
  URN =		{urn:nbn:de:0030-drops-197346},
  doi =		{10.4230/LIPIcs.STACS.2024.24},
  annote =	{Keywords: circular pattern matching, approximate pattern matching, edit distance}
}
Document
Optimal Near-Linear Space Heaviest Induced Ancestors

Authors: Panagiotis Charalampopoulos, Bartłomiej Dudek, Paweł Gawrychowski, and Karol Pokorski

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
We revisit the Heaviest Induced Ancestors (HIA) problem that was introduced by Gagie, Gawrychowski, and Nekrich [CCCG 2013] and has a number of applications in string algorithms. Let T₁ and T₂ be two rooted trees whose nodes have weights that are increasing in all root-to-leaf paths, and labels on the leaves, such that no two leaves of a tree have the same label. A pair of nodes (u, v) ∈ T₁ × T₂ is induced if and only if there is a label shared by leaf-descendants of u and v. In an HIA query, given nodes x ∈ T₁ and y ∈ T₂, the goal is to find an induced pair of nodes (u, v) of the maximum total weight such that u is an ancestor of x and v is an ancestor of y. Let n be the upper bound on the sizes of the two trees. It is known that no data structure of size 𝒪̃(n) can answer HIA queries in o(log n / log log n) time [Charalampopoulos, Gawrychowski, Pokorski; ICALP 2020]. This (unconditional) lower bound is a polyloglog n factor away from the query time of the fastest 𝒪̃(n)-size data structure known to date for the HIA problem [Abedin, Hooshmand, Ganguly, Thankachan; Algorithmica 2022]. In this work, we resolve the query-time complexity of the HIA problem for the near-linear space regime by presenting a data structure that can be built in 𝒪̃(n) time and answers HIA queries in 𝒪(log n/log log n) time. As a direct corollary, we obtain an 𝒪̃(n)-size data structure that maintains the LCS of a static string and a dynamic string, both of length at most n, in time optimal for this space regime. The main ingredients of our approach are fractional cascading and the utilization of an 𝒪(log n/ log log n)-depth tree decomposition. The latter allows us to break through the Ω(log n) barrier faced by previous works, due to the depth of the considered heavy-path decompositions.

Cite as

Panagiotis Charalampopoulos, Bartłomiej Dudek, Paweł Gawrychowski, and Karol Pokorski. Optimal Near-Linear Space Heaviest Induced Ancestors. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.CPM.2023.8,
  author =	{Charalampopoulos, Panagiotis and Dudek, Bart{\l}omiej and Gawrychowski, Pawe{\l} and Pokorski, Karol},
  title =	{{Optimal Near-Linear Space Heaviest Induced Ancestors}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.8},
  URN =		{urn:nbn:de:0030-drops-179624},
  doi =		{10.4230/LIPIcs.CPM.2023.8},
  annote =	{Keywords: data structures, string algorithms, fractional cascading}
}
Document
Approximate Circular Pattern Matching

Authors: Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We investigate the complexity of approximate circular pattern matching (CPM, in short) under the Hamming and edit distance. Under each of these two basic metrics, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions (called occurrences) of fragments of T that are at distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if there is any such occurrence. All previous results for approximate CPM were either average-case upper bounds or heuristics, with the exception of the work of Charalampopoulos et al. [CKP^+, JCSS'21], who considered only the Hamming distance. For the reporting version of the approximate CPM problem, under the Hamming distance we improve upon the main algorithm of [CKP^+, JCSS'21] from 𝒪(n+(n/m) ⋅ k⁴) to 𝒪(n+(n/m) ⋅ k³ log log k) time; for the edit distance, we give an 𝒪(nk²)-time algorithm. Notably, for the decision versions and wide parameter-ranges, we give algorithms whose complexities are almost identical to the state-of-the-art for standard (i.e., non-circular) approximate pattern matching: - For the decision version of the approximate CPM problem under the Hamming distance, we obtain an 𝒪(n+(n/m) ⋅ k² log k / log log k)-time algorithm, which works in 𝒪(n) time whenever k = 𝒪(√{m log log m / log m}). In comparison, the fastest algorithm for the standard counterpart of the problem, by Chan et al. [CGKKP, STOC’20], runs in 𝒪(n) time only for k = 𝒪(√m). We achieve this result via a reduction to a geometric problem by building on ideas from [CKP^+, JCSS'21] and Charalampopoulos et al. [CKW, FOCS'20]. - For the decision version of the approximate CPM problem under the edit distance, the 𝒪(nklog³ k) runtime of our algorithm near matches the 𝒪(nk) runtime of the Landau-Vishkin algorithm [LV, J. Algorithms'89] for approximate pattern matching under edit distance; the latter algorithm remains the fastest known for k = Ω(m^{2/5}). As a stepping stone, we propose an 𝒪(nklog³ k)-time algorithm for solving the Longest Prefix k'-Approximate Match problem, proposed by Landau et al. [LMS, SICOMP'98], for all k' ∈ {1,…,k}. Our algorithm is based on Tiskin’s theory of seaweeds [Tiskin, Math. Comput. Sci.'08], with recent advancements (see Charalampopoulos et al. [CKW, FOCS'22]), and on exploiting the seaweeds' relation to Monge matrices. In contrast, we obtain a conditional lower bound that suggests a polynomial separation between approximate CPM under the Hamming distance over the binary alphabet and its non-circular counterpart. We also show that a strongly subquadratic-time algorithm for the decision version of approximate CPM under edit distance would refute the Strong Exponential Time Hypothesis.

Cite as

Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski, Solon P. Pissis, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate Circular Pattern Matching. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.ESA.2022.35,
  author =	{Charalampopoulos, Panagiotis and Kociumaka, Tomasz and Radoszewski, Jakub and Pissis, Solon P. and Rytter, Wojciech and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Approximate Circular Pattern Matching}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.35},
  URN =		{urn:nbn:de:0030-drops-169738},
  doi =		{10.4230/LIPIcs.ESA.2022.35},
  annote =	{Keywords: approximate circular pattern matching, Hamming distance, edit distance}
}
Document
Longest Palindromic Substring in Sublinear Time

Authors: Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
We revisit the classic algorithmic problem of computing a longest palidromic substring. This problem is solvable by a celebrated 𝒪(n)-time algorithm [Manacher, J. ACM 1975], where n is the length of the input string. For small alphabets, 𝒪(n) is not necessarily optimal in the word RAM model of computation: a string of length n over alphabet [0,σ) can be stored in 𝒪(n log σ/log n) space and read in 𝒪(n log σ/log n) time. We devise a simple 𝒪(n log σ/log n)-time algorithm for computing a longest palindromic substring. In particular, our algorithm works in sublinear time if σ = 2^{o(log n)}. Our technique relies on periodicity and on the 𝒪(n log σ/log n)-time constructible data structure of Kempa and Kociumaka [STOC 2019] that answers longest common extension queries in 𝒪(1) time.

Cite as

Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski. Longest Palindromic Substring in Sublinear Time. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 20:1-20:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.CPM.2022.20,
  author =	{Charalampopoulos, Panagiotis and Pissis, Solon P. and Radoszewski, Jakub},
  title =	{{Longest Palindromic Substring in Sublinear Time}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{20:1--20:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.20},
  URN =		{urn:nbn:de:0030-drops-161472},
  doi =		{10.4230/LIPIcs.CPM.2022.20},
  annote =	{Keywords: string algorithms, longest palindromic substring, longest common extension}
}
Document
Rectangular Tile Covers of 2D-Strings

Authors: Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
We consider tile covers of 2D-strings which are a generalization of periodicity of 1D-strings. We say that a 2D-string A is a tile cover of a 2D-string S if S can be decomposed into non-overlapping 2D-strings, each of them equal to A or to A^T, where A^T is the transpose of A. We show that all tile covers of a 2D-string of size N can be computed in 𝒪(N^{1+ε}) time for any ε > 0. We also show a linear-time algorithm for computing all 1D-strings being tile covers of a 2D-string.

Cite as

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Rectangular Tile Covers of 2D-Strings. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{radoszewski_et_al:LIPIcs.CPM.2022.23,
  author =	{Radoszewski, Jakub and Rytter, Wojciech and Straszy\'{n}ski, Juliusz and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Rectangular Tile Covers of 2D-Strings}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.23},
  URN =		{urn:nbn:de:0030-drops-161508},
  doi =		{10.4230/LIPIcs.CPM.2022.23},
  annote =	{Keywords: tile cover, periodicity, efficient algorithm}
}
Document
Pattern Masking for Dictionary Matching

Authors: Panagiotis Charalampopoulos, Huiping Chen, Peter Christen, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, and Jakub Radoszewski

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Data masking is a common technique for sanitizing sensitive data maintained in database systems, and it is also becoming increasingly important in various application areas, such as in record linkage of personal data. This work formalizes the Pattern Masking for Dictionary Matching (PMDM) problem. In PMDM, we are given a dictionary 𝒟 of d strings, each of length 𝓁, a query string q of length 𝓁, and a positive integer z, and we are asked to compute a smallest set K ⊆ {1,…,𝓁}, so that if q[i] is replaced by a wildcard for all i ∈ K, then q matches at least z strings from 𝒟. Solving PMDM allows providing data utility guarantees as opposed to existing approaches. We first show, through a reduction from the well-known k-Clique problem, that a decision version of the PMDM problem is NP-complete, even for strings over a binary alphabet. We thus approach the problem from a more practical perspective. We show a combinatorial 𝒪((d𝓁)^{|K|/3}+d𝓁)-time and 𝒪(d𝓁)-space algorithm for PMDM for |K| = 𝒪(1). In fact, we show that we cannot hope for a faster combinatorial algorithm, unless the combinatorial k-Clique hypothesis fails [Abboud et al., SIAM J. Comput. 2018; Lincoln et al., SODA 2018]. We also generalize this algorithm for the problem of masking multiple query strings simultaneously so that every string has at least z matches in 𝒟. Note that PMDM can be viewed as a generalization of the decision version of the dictionary matching with mismatches problem: by querying a PMDM data structure with string q and z = 1, one obtains the minimal number of mismatches of q with any string from 𝒟. The query time or space of all known data structures for the more restricted problem of dictionary matching with at most k mismatches incurs some exponential factor with respect to k. A simple exact algorithm for PMDM runs in time 𝒪(2^𝓁 d). We present a data structure for PMDM that answers queries over 𝒟 in time 𝒪(2^{𝓁/2}(2^{𝓁/2}+τ)𝓁) and requires space 𝒪(2^𝓁 d²/τ²+2^{𝓁/2}d), for any parameter τ ∈ [1,d]. We complement our results by showing a two-way polynomial-time reduction between PMDM and the Minimum Union problem [Chlamtáč et al., SODA 2017]. This gives a polynomial-time 𝒪(d^{1/4+ε})-approximation algorithm for PMDM, which is tight under a plausible complexity conjecture.

Cite as

Panagiotis Charalampopoulos, Huiping Chen, Peter Christen, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, and Jakub Radoszewski. Pattern Masking for Dictionary Matching. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 65:1-65:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.ISAAC.2021.65,
  author =	{Charalampopoulos, Panagiotis and Chen, Huiping and Christen, Peter and Loukides, Grigorios and Pisanti, Nadia and Pissis, Solon P. and Radoszewski, Jakub},
  title =	{{Pattern Masking for Dictionary Matching}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{65:1--65:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.65},
  URN =		{urn:nbn:de:0030-drops-154982},
  doi =		{10.4230/LIPIcs.ISAAC.2021.65},
  annote =	{Keywords: string algorithms, dictionary matching, wildcards, record linkage, query term dropping}
}
  • Refine by Author
  • 25 Charalampopoulos, Panagiotis
  • 14 Radoszewski, Jakub
  • 11 Pissis, Solon P.
  • 8 Rytter, Wojciech
  • 8 Waleń, Tomasz
  • Show More...

  • Refine by Classification
  • 26 Theory of computation → Pattern matching
  • 2 Theory of computation → Dynamic graph algorithms
  • 2 Theory of computation → Shortest paths
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Data structures design and analysis

  • Refine by Keyword
  • 8 string algorithms
  • 5 edit distance
  • 5 longest common substring
  • 3 Hamming distance
  • 3 dictionary matching
  • Show More...

  • Refine by Type
  • 30 document

  • Refine by Publication Year
  • 10 2024
  • 6 2020
  • 5 2021
  • 3 2019
  • 3 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail