99 Search Results for "Chen, Danny Z."


Volume

LIPIcs, Volume 164

36th International Symposium on Computational Geometry (SoCG 2020)

SoCG 2020, June 23-26, 2020, Zürich, Switzerland

Editors: Sergio Cabello and Danny Z. Chen

Document
Longest Common Substring with Gaps and Related Problems

Authors: Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The longest common substring (also known as longest common factor) and longest common subsequence problems are two well-studied classical string problems. The former is solvable in optimal 𝒪(n) time for two strings of length m and n with m ≤ n, and the latter is solvable in 𝒪(nm) time, which is conditionally optimal under the Strong Exponential Time Hypothesis. In this work, we study the problem of longest common factor with gaps, that is, finding a set of at most k matching substrings obeying precedence conditions with maximum total length. For k = 1, this is equivalent to the longest common factor problem, and for k = m, this is equivalent to the longest common subsequence problem. Our work demonstrates that, for constant k, this problem can be solved in strongly subquadratic time, i.e., nm^{1 - Θ(1)}. Motivated by co-linear chaining applications in Computational Biology, we further demonstrate that the longest common factor with gaps results can be extended to the case where the matches are restricted to maximal exact matches (MEMs). To further demonstrate the applicability of our techniques, we show that a similar approach can be used for a restricted version of the episode matching problem where one seeks an ordered set of at most k matches whose concatenation equals a query pattern P and the length of the substring of T containing the matches is minimized. These solutions all run in strongly subquadratic time for constant k.

Cite as

Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan. Longest Common Substring with Gaps and Related Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banerjee_et_al:LIPIcs.ESA.2024.16,
  author =	{Banerjee, Aranya and Gibney, Daniel and Thankachan, Sharma V.},
  title =	{{Longest Common Substring with Gaps and Related Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.16},
  URN =		{urn:nbn:de:0030-drops-210877},
  doi =		{10.4230/LIPIcs.ESA.2024.16},
  annote =	{Keywords: Pattern Matching, Longest Common Subsequence, Episode Matching}
}
Document
From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs

Authors: Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).

Cite as

Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu. From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.42,
  author =	{Chekuri, Chandra and Jain, Rhea and Kulkarni, Shubhang and Zheng, Da Wei and Zhu, Weihao},
  title =	{{From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.42},
  URN =		{urn:nbn:de:0030-drops-211134},
  doi =		{10.4230/LIPIcs.ESA.2024.42},
  annote =	{Keywords: Directed Planar Graphs, Submodular Functions, Steiner Tree, Network Design}
}
Document
Parameterized Dynamic Data Structure for Split Completion

Authors: Konrad Majewski, Michał Pilipczuk, and Anna Zych-Pawlewicz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We design a randomized data structure that, for a fully dynamic graph G updated by edge insertions and deletions and integers k, d fixed upon initialization, maintains the answer to the Split Completion problem: whether one can add k edges to G to obtain a split graph. The data structure can be initialized on an edgeless n-vertex graph in time n ⋅ (k d ⋅ log n)^{𝒪(1)}, and the amortized time complexity of an update is 5^k ⋅ (k d ⋅ log n)^{𝒪(1)}. The answer provided by the data structure is correct with probability 1-𝒪(n^{-d}).

Cite as

Konrad Majewski, Michał Pilipczuk, and Anna Zych-Pawlewicz. Parameterized Dynamic Data Structure for Split Completion. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 87:1-87:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{majewski_et_al:LIPIcs.ESA.2024.87,
  author =	{Majewski, Konrad and Pilipczuk, Micha{\l} and Zych-Pawlewicz, Anna},
  title =	{{Parameterized Dynamic Data Structure for Split Completion}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{87:1--87:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.87},
  URN =		{urn:nbn:de:0030-drops-211587},
  doi =		{10.4230/LIPIcs.ESA.2024.87},
  annote =	{Keywords: parameterized complexity, dynamic data structures, split graphs}
}
Document
Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM

Authors: Tim Randolph and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the parameterized complexity of algorithmic problems whose input is an integer set A in terms of the doubling constant 𝒞 := |A+A| / |A|, a fundamental measure of additive structure. We present evidence that this new parameterization is algorithmically useful in the form of new results for two difficult, well-studied problems: Integer Programming and Subset Sum. First, we show that determining the feasibility of bounded Integer Programs is a tractable problem when parameterized in the doubling constant. Specifically, we prove that the feasibility of an integer program ℐ with n polynomially-bounded variables and m constraints can be determined in time n^{O_𝒞(1)} ⋅ poly(|ℐ|) when the column set of the constraint matrix has doubling constant 𝒞. Second, we show that the Subset Sum and Unbounded Subset Sum problems can be solved in time n^{O_C(1)} and n^{O_𝒞(log log log n)}, respectively, where the O_C notation hides functions that depend only on the doubling constant 𝒞. We also show the equivalence of achieving an FPT algorithm for Subset Sum with bounded doubling and achieving a milestone result for the parameterized complexity of Box ILP. Finally, we design near-linear time algorithms for k-SUM as well as tight lower bounds for 4-SUM and nearly tight lower bounds for k-SUM, under the k-SUM conjecture. Several of our results rely on a new proof that Freiman’s Theorem, a central result in additive combinatorics, can be made efficiently constructive. This result may be of independent interest.

Cite as

Tim Randolph and Karol Węgrzycki. Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{randolph_et_al:LIPIcs.ESA.2024.96,
  author =	{Randolph, Tim and W\k{e}grzycki, Karol},
  title =	{{Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{96:1--96:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.96},
  URN =		{urn:nbn:de:0030-drops-211672},
  doi =		{10.4230/LIPIcs.ESA.2024.96},
  annote =	{Keywords: Parameterized algorithms, parameterized complexity, additive combinatorics, Subset Sum, integer programming, doubling constant}
}
Document
Privacy Comparison for Bitcoin Light Client Implementations

Authors: Arad Kotzer and Ori Rottenstreich

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Light clients implement a simple solution for Bitcoin’s scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated state of their addresses, light clients rely on full nodes to provide them with the required information. To do so, they must reveal information about the addresses they are interested in. This paper studies the two most common light client implementations, SPV and Neutrino with regards to their privacy. We define privacy metrics for comparing the privacy of the different implementations. We evaluate and compare the privacy of the implementations over time on real Bitcoin data and discuss the inherent privacy-communication tradeoff. In addition, we propose general techniques to enhance light client privacy in the existing implementations. Finally, we propose a new SPV-based light client model, the aggregation model, evaluate it, and show it can achieve enhanced privacy than in the existing light client implementations.

Cite as

Arad Kotzer and Ori Rottenstreich. Privacy Comparison for Bitcoin Light Client Implementations. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kotzer_et_al:LIPIcs.AFT.2024.15,
  author =	{Kotzer, Arad and Rottenstreich, Ori},
  title =	{{Privacy Comparison for Bitcoin Light Client Implementations}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.15},
  URN =		{urn:nbn:de:0030-drops-209510},
  doi =		{10.4230/LIPIcs.AFT.2024.15},
  annote =	{Keywords: Blockchain, Privacy, Light Clients, Bloom filter}
}
Document
RobTL: Robustness Temporal Logic for CPS

Authors: Valentina Castiglioni, Michele Loreti, and Simone Tini

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We propose Robustness Temporal Logic (RobTL), a novel temporal logic for the specification and analysis of distances between the behaviours of Cyber-Physical Systems (CPS) over a finite time horizon. RobTL specifications allow us to measure the differences in the behaviours of systems with respect to various objectives and temporal constraints, and to study how those differences evolve in time. Specifically, the unique features of RobTL allow us to specify robustness properties of CPS against uncertainty and perturbations. As an example, we use RobTL to analyse the robustness of an engine system that is subject to attacks aimed at inflicting overstress of equipment.

Cite as

Valentina Castiglioni, Michele Loreti, and Simone Tini. RobTL: Robustness Temporal Logic for CPS. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{castiglioni_et_al:LIPIcs.CONCUR.2024.15,
  author =	{Castiglioni, Valentina and Loreti, Michele and Tini, Simone},
  title =	{{RobTL: Robustness Temporal Logic for CPS}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.15},
  URN =		{urn:nbn:de:0030-drops-207870},
  doi =		{10.4230/LIPIcs.CONCUR.2024.15},
  annote =	{Keywords: Cyber-physical systems, robustness, temporal logic, uncertainty}
}
Document
Capturing the Shape of a Point Set with a Line Segment

Authors: Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Detecting location-correlated groups in point sets is an important task in a wide variety of applications areas. In addition to merely detecting such groups, the group’s shape carries meaning as well. In this paper, we represent a group’s shape using a simple geometric object, a line segment. Specifically, given a radius r, we say a line segment is representative of a point set P of n points if it is within distance r of each point p ∈ P. We aim to find the shortest such line segment. This problem is equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an algorithm to find the shortest representative segment in O(n log h + h log³h) time, where h is the size of the convex hull of P. Additionally, we show how to maintain a stable approximation of the shortest representative segment when the points in P move.

Cite as

Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms. Capturing the Shape of a Point Set with a Line Segment. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanbeusekom_et_al:LIPIcs.MFCS.2024.26,
  author =	{van Beusekom, Nathan and van Kreveld, Marc and van Mulken, Max and Roeloffzen, Marcel and Speckmann, Bettina and Wulms, Jules},
  title =	{{Capturing the Shape of a Point Set with a Line Segment}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.26},
  URN =		{urn:nbn:de:0030-drops-205820},
  doi =		{10.4230/LIPIcs.MFCS.2024.26},
  annote =	{Keywords: Shape descriptor, Stabbing, Rotating calipers}
}
Document
Buffered Streaming Edge Partitioning

Authors: Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Addressing the challenges of processing massive graphs, which are prevalent in diverse fields such as social, biological, and technical networks, we introduce HeiStreamE and FreightE, two innovative (buffered) streaming algorithms designed for efficient edge partitioning of large-scale graphs. HeiStreamE utilizes an adapted Split-and-Connect graph model and a Fennel-based multilevel partitioning scheme, while FreightE partitions a hypergraph representation of the input graph. Besides ensuring superior solution quality, these approaches also overcome the limitations of existing algorithms by maintaining linear dependency on the graph size in both time and memory complexity with no dependence on the number of blocks of partition. Our comprehensive experimental analysis demonstrates that HeiStreamE outperforms current streaming algorithms and the re-streaming algorithm 2PS in partitioning quality (replication factor), and is more memory-efficient for real-world networks where the number of edges is far greater than the number of vertices. Further, FreightE is shown to produce fast and efficient partitions, particularly for higher numbers of partition blocks.

Cite as

Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier. Buffered Streaming Edge Partitioning. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 5:1-5:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chhabra_et_al:LIPIcs.SEA.2024.5,
  author =	{Chhabra, Adil and Fonseca Faraj, Marcelo and Schulz, Christian and Seemaier, Daniel},
  title =	{{Buffered Streaming Edge Partitioning}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{5:1--5:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.5},
  URN =		{urn:nbn:de:0030-drops-203701},
  doi =		{10.4230/LIPIcs.SEA.2024.5},
  annote =	{Keywords: graph partitioning, edge partitioning, streaming, online, buffered partitioning}
}
Document
Track A: Algorithms, Complexity and Games
Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness

Authors: Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
It is known for many algorithmic problems that if a tree decomposition of width t is given in the input, then the problem can be solved with exponential dependence on t. A line of research initiated by Lokshtanov, Marx, and Saurabh [SODA 2011] produced lower bounds showing that in many cases known algorithms already achieve the best possible exponential dependence on t, assuming the Strong Exponential-Time Hypothesis (SETH). The main message of this paper is showing that the same lower bounds can already be obtained in a much more restricted setting: informally, a graph consisting of a block of t vertices connected to components of constant size already has the same hardness as a general tree decomposition of width t. Formally, a (σ,δ)-hub is a set Q of vertices such that every component of Q has size at most σ and is adjacent to at most δ vertices of Q. We explore if the known tight lower bounds parameterized by the width of the given tree decomposition remain valid if we parameterize by the size of the given hub. - For every ε > 0, there are σ,δ > 0 such that Independent Set (equivalently Vertex Cover) cannot be solved in time (2-ε)^p⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the SETH. This matches the earlier tight lower bounds parameterized by width of the tree decomposition. Similar tight bounds are obtained for Odd Cycle Transversal, Max Cut, q-Coloring, and edge/vertex deletions versions of q-Coloring. - For every ε > 0, there are σ,δ > 0 such that △-Partition cannot be solved in time (2-ε)^p ⋅ n, even if a (σ, δ)-hub of size p is given in the input, assuming the Set Cover Conjecture (SCC). In fact, we prove that this statement is equivalent to the SCC, thus it is unlikely that this could be proved assuming the SETH. - For Dominating Set, we can prove a non-tight lower bound ruling out (2-ε)^p ⋅ n^𝒪(1) algorithms, assuming either the SETH or the SCC, but this does not match the 3^p⋅ n^{𝒪(1)} upper bound. Thus our results reveal that, for many problems, the research on lower bounds on the dependence on tree width was never really about tree decompositions, but the real source of hardness comes from a much simpler structure. Additionally, we study if the same lower bounds can be obtained if σ and δ are fixed universal constants (not depending on ε). We show that lower bounds of this form are possible for Max Cut and the edge-deletion version of q-Coloring, under the Max 3-Sat Hypothesis (M3SH). However, no such lower bounds are possible for Independent Set, Odd Cycle Transversal, and the vertex-deletion version of q-Coloring: better than brute force algorithms are possible for every fixed (σ,δ).

Cite as

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2024.34,
  author =	{Can Esmer, Bar{\i}\c{s} and Focke, Jacob and Marx, D\'{a}niel and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Fundamental Problems on Bounded-Treewidth Graphs: The Real Source of Hardness}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.34},
  URN =		{urn:nbn:de:0030-drops-201772},
  doi =		{10.4230/LIPIcs.ICALP.2024.34},
  annote =	{Keywords: Parameterized Complexity, Tight Bounds, Hub, Treewidth, Strong Exponential Time Hypothesis, Vertex Coloring, Vertex Deletion, Edge Deletion, Triangle Packing, Triangle Partition, Set Cover Hypothesis, Dominating Set}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Document
Complete Volume
LIPIcs, Volume 164, SoCG 2020, Complete Volume

Authors: Sergio Cabello and Danny Z. Chen

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
LIPIcs, Volume 164, SoCG 2020, Complete Volume

Cite as

36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 1-1222, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{cabello_et_al:LIPIcs.SoCG.2020,
  title =	{{LIPIcs, Volume 164, SoCG 2020, Complete Volume}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{1--1222},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020},
  URN =		{urn:nbn:de:0030-drops-121576},
  doi =		{10.4230/LIPIcs.SoCG.2020},
  annote =	{Keywords: LIPIcs, Volume 164, SoCG 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Sergio Cabello and Danny Z. Chen

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cabello_et_al:LIPIcs.SoCG.2020.0,
  author =	{Cabello, Sergio and Chen, Danny Z.},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.0},
  URN =		{urn:nbn:de:0030-drops-121587},
  doi =		{10.4230/LIPIcs.SoCG.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons

Authors: Eyal Ackerman, Balázs Keszegh, and Günter Rote

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
What is the maximum number of intersections of the boundaries of a simple m-gon and a simple n-gon, assuming general position? This is a basic question in combinatorial geometry, and the answer is easy if at least one of m and n is even. If both m and n are odd, the best known construction has mn-(m+n)+3 intersections, and it is conjectured that this is the maximum. However, the best known upper bound is only mn-(m + ⌈ n/6 ⌉), for m ≥ n. We prove a new upper bound of mn-(m+n)+C for some constant C, which is optimal apart from the value of C.

Cite as

Eyal Ackerman, Balázs Keszegh, and Günter Rote. An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{ackerman_et_al:LIPIcs.SoCG.2020.1,
  author =	{Ackerman, Eyal and Keszegh, Bal\'{a}zs and Rote, G\"{u}nter},
  title =	{{An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{1:1--1:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.1},
  URN =		{urn:nbn:de:0030-drops-121591},
  doi =		{10.4230/LIPIcs.SoCG.2020.1},
  annote =	{Keywords: Simple polygon, Ramsey theory, combinatorial geometry}
}
Document
Dynamic Geometric Set Cover and Hitting Set

Authors: Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We investigate dynamic versions of geometric set cover and hitting set where points and ranges may be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution for the current problem instance. While their static versions have been extensively studied in the past, surprisingly little is known about dynamic geometric set cover and hitting set. For instance, even for the most basic case of one-dimensional interval set cover and hitting set, no nontrivial results were known. The main contribution of our paper are two frameworks that lead to efficient data structures for dynamically maintaining set covers and hitting sets in ℝ¹ and ℝ². The first framework uses bootstrapping and gives a (1+ε)-approximate data structure for dynamic interval set cover in ℝ¹ with O(n^α/ε) amortized update time for any constant α > 0; in ℝ², this method gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set with O(n^(1/2+α)) amortized update time. The second framework uses local modification, and leads to a (1+ε)-approximate data structure for dynamic interval hitting set in ℝ¹ with Õ(1/ε) amortized update time; in ℝ², it gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set in the partially dynamic settings with Õ(1) amortized update time.

Cite as

Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic Geometric Set Cover and Hitting Set. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2020.2,
  author =	{Agarwal, Pankaj K. and Chang, Hsien-Chih and Suri, Subhash and Xiao, Allen and Xue, Jie},
  title =	{{Dynamic Geometric Set Cover and Hitting Set}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.2},
  URN =		{urn:nbn:de:0030-drops-121604},
  doi =		{10.4230/LIPIcs.SoCG.2020.2},
  annote =	{Keywords: Geometric set cover, Geometric hitting set, Dynamic data structures}
}
  • Refine by Author
  • 6 Fekete, Sándor P.
  • 3 Becker, Aaron T.
  • 3 Boissonnat, Jean-Daniel
  • 3 Buchin, Kevin
  • 3 Chen, Danny Z.
  • Show More...

  • Refine by Classification
  • 71 Theory of computation → Computational geometry
  • 11 Theory of computation → Design and analysis of algorithms
  • 7 Mathematics of computing → Algebraic topology
  • 5 Mathematics of computing → Combinatoric problems
  • 5 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 4 Delaunay triangulation
  • 4 Topological Data Analysis
  • 3 Computational geometry
  • 3 Computational topology
  • 3 Parameterized Complexity
  • Show More...

  • Refine by Type
  • 98 document
  • 1 volume

  • Refine by Publication Year
  • 88 2020
  • 10 2024
  • 1 2013

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail