19 Search Results for "Cohen, Lee"


Document
RANDOM
On the Power of Regular and Permutation Branching Programs

Authors: Chin Ho Lee, Edward Pyne, and Salil Vadhan

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation. - Regular SOBPs of length n and width ⌊w(n+1)/2⌋ can exactly simulate general SOBPs of length n and width w, and moreover an n/2-o(n) blow-up in width is necessary for such a simulation. Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our simulation also extends to general (even read-many) oblivious branching programs. - There exist natural functions computable by regular SOBPs of constant width that are average-case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width. - There exist functions computable by constant-width arbitrary-order permutation ROBPs that are worst-case hard for exponential-width SOBPs. - Read-twice permutation branching programs of subexponential width can simulate polynomial-width arbitrary-order ROBPs.

Cite as

Chin Ho Lee, Edward Pyne, and Salil Vadhan. On the Power of Regular and Permutation Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 44:1-44:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.APPROX/RANDOM.2023.44,
  author =	{Lee, Chin Ho and Pyne, Edward and Vadhan, Salil},
  title =	{{On the Power of Regular and Permutation Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{44:1--44:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.44},
  URN =		{urn:nbn:de:0030-drops-188698},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.44},
  annote =	{Keywords: Pseudorandomness, Branching Programs}
}
Document
Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover

Authors: Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
In the Directed Feedback Vertex Set (DFVS) problem, one is given a directed graph G = (V,E) and wants to find a minimum cardinality set S ⊆ V such that G-S is acyclic. DFVS is a fundamental problem in computer science and finds applications in areas such as deadlock detection. The problem was the subject of the 2022 PACE coding challenge. We develop a novel exact algorithm for the problem that is tailored to perform well on instances that are mostly bi-directed. For such instances, we adapt techniques from the well-researched vertex cover problem. Our core idea is an iterative reduction to vertex cover. To this end, we also develop a new reduction rule that reduces the number of not bi-directed edges. With the resulting algorithm, we were able to win third place in the exact track of the PACE challenge. We perform computational experiments and compare the running time to other exact algorithms, in particular to the winning algorithm in PACE. Our experiments show that we outpace the other algorithms on instances that have a low density of uni-directed edges.

Cite as

Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 10:1-10:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{angrick_et_al:LIPIcs.SEA.2023.10,
  author =	{Angrick, Sebastian and Bals, Ben and Casel, Katrin and Cohen, Sarel and Friedrich, Tobias and Hastrich, Niko and Hradilak, Theresa and Issac, Davis and Ki{\ss}ig, Otto and Schmidt, Jonas and Wendt, Leo},
  title =	{{Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.10},
  URN =		{urn:nbn:de:0030-drops-183602},
  doi =		{10.4230/LIPIcs.SEA.2023.10},
  annote =	{Keywords: directed feedback vertex set, vertex cover, reduction rules}
}
Document
Swarms of Mobile Robots: Towards Versatility with Safety

Authors: Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We present Pactole, a formal framework to design and prove the correctness of protocols (or the impossibility of their existence) that target mobile robotic swarms. Unlike previous approaches, our methodology unifies in a single formalism the execution model, the problem specification, the protocol, and its proof of correctness. The Pactole framework makes use of the Coq proof assistant, and is specially targeted at protocol designers and problem specifiers, so that a common unambiguous language is used from the very early stages of protocol development. We stress the underlying framework design principles to enable high expressivity and modularity, and provide concrete examples about how the Pactole framework can be used to tackle actual problems, some previously addressed by the Distributed Computing community, but also new problems, while being certified correct.

Cite as

Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Swarms of Mobile Robots: Towards Versatility with Safety. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 02:1-02:36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{courtieu_et_al:LITES.8.2.2,
  author =	{Courtieu, Pierre and Rieg, Lionel and Tixeuil, S\'{e}bastien and Urbain, Xavier},
  title =	{{Swarms of Mobile Robots: Towards Versatility with Safety}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{02:1--02:36},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Courtieu, Pierre and Rieg, Lionel and Tixeuil, S\'{e}bastien and Urbain, Xavier},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.2},
  doi =		{10.4230/LITES.8.2.2},
  annote =	{Keywords: distributed algorithm, mobile autonomous robots, formal proof}
}
Document
Approximation Algorithms for Continuous Clustering and Facility Location Problems

Authors: Deeparnab Chakrabarty, Maryam Negahbani, and Ankita Sarkar

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
In this paper, we consider center-based clustering problems where C, the set of points to be clustered, lies in a metric space (X,d), and the set X of candidate centers is potentially infinite-sized. We call such problems continuous clustering problems to differentiate them from the discrete clustering problems where the set of candidate centers is explicitly given. It is known that for many objectives, when one restricts the set of centers to C itself and applies an α_dis-approximation algorithm for the discrete version, one obtains a β ⋅ α_{dis}-approximation algorithm for the continuous version via the triangle inequality property of the distance function. Here β depends on the objective, and for many objectives such as k-median, β = 2, while for some others such as k-means, β = 4. The motivating question in this paper is whether this gap of factor β between continuous and discrete problems is inherent, or can one design better algorithms for continuous clustering than simply reducing to the discrete case as mentioned above? In a recent SODA 2021 paper, Cohen-Addad, Karthik, and Lee prove a factor-2 and a factor-4 hardness, respectively, for the continuous versions of the k-median and k-means problems, even when the number of cluster centers is a constant. The discrete problem for a constant number of centers is easily solvable exactly using enumeration, and therefore, in certain regimes, the "β-factor loss" seems unavoidable. In this paper, we describe a technique based on the round-or-cut framework to approach continuous clustering problems. We show that, for the continuous versions of some clustering problems, we can design approximation algorithms attaining a better factor than the β-factor blow-up mentioned above. In particular, we do so for: the uncapacitated facility location problem with uniform facility opening costs (λ-UFL); the k-means problem; the individually fair k-median problem; and the k-center with outliers problem. Notably, for λ-UFL, where β = 2 and the discrete version is NP-hard to approximate within a factor of 1.27, we describe a 2.32-approximation for the continuous version, and indeed 2.32 < 2 × 1.27. Also, for k-means, where β = 4 and the best known approximation factor for the discrete version is 9, we obtain a 32-approximation for the continuous version, which is better than 4 × 9 = 36. The main challenge one faces is that most algorithms for the discrete clustering problems, including the state of the art solutions, depend on Linear Program (LP) relaxations that become infinite-sized in the continuous version. To overcome this, we design new linear program relaxations for the continuous clustering problems which, although having exponentially many constraints, are amenable to the round-or-cut framework.

Cite as

Deeparnab Chakrabarty, Maryam Negahbani, and Ankita Sarkar. Approximation Algorithms for Continuous Clustering and Facility Location Problems. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 33:1-33:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chakrabarty_et_al:LIPIcs.ESA.2022.33,
  author =	{Chakrabarty, Deeparnab and Negahbani, Maryam and Sarkar, Ankita},
  title =	{{Approximation Algorithms for Continuous Clustering and Facility Location Problems}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.33},
  URN =		{urn:nbn:de:0030-drops-169710},
  doi =		{10.4230/LIPIcs.ESA.2022.33},
  annote =	{Keywords: Approximation Algorithms, Clustering, Facility Location, Fairness, Outliers}
}
Document
Track A: Algorithms, Complexity and Games
Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems

Authors: Amir Abboud, Vincent Cohen-Addad, Euiwoong Lee, and Pasin Manurangsi

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study several questions related to diversifying search results. We give improved approximation algorithms in each of the following problems, together with some lower bounds. 1) We give a polynomial-time approximation scheme (PTAS) for a diversified search ranking problem [Nikhil Bansal et al., 2010] whose objective is to minimizes the discounted cumulative gain. Our PTAS runs in time n^{2^O(log(1/ε)/ε)} ⋅ m^O(1) where n denotes the number of elements in the databases and m denotes the number of constraints. Complementing this result, we show that no PTAS can run in time f(ε) ⋅ (nm)^{2^o(1/ε)} assuming Gap-ETH and therefore our running time is nearly tight. Both our upper and lower bounds answer open questions from [Nikhil Bansal et al., 2010]. 2) We next consider the Max-Sum Dispersion problem, whose objective is to select k out of n elements from a database that maximizes the dispersion, which is defined as the sum of the pairwise distances under a given metric. We give a quasipolynomial-time approximation scheme (QPTAS) for the problem which runs in time n^{O_ε(log n)}. This improves upon previously known polynomial-time algorithms with approximate ratios 0.5 [Refael Hassin et al., 1997; Allan Borodin et al., 2017]. Furthermore, we observe that reductions from previous work rule out approximation schemes that run in n^õ_ε(log n) time assuming ETH. 3) Finally, we consider a generalization of Max-Sum Dispersion called Max-Sum Diversification. In addition to the sum of pairwise distance, the objective also includes another function f. For monotone submodular function f, we give a quasipolynomial-time algorithm with approximation ratio arbitrarily close to (1-1/e). This improves upon the best polynomial-time algorithm which has approximation ratio 0.5 [Allan Borodin et al., 2017]. Furthermore, the (1-1/e) factor is also tight as achieving better-than-(1-1/e) approximation is NP-hard [Uriel Feige, 1998].

Cite as

Amir Abboud, Vincent Cohen-Addad, Euiwoong Lee, and Pasin Manurangsi. Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 7:1-7:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ICALP.2022.7,
  author =	{Abboud, Amir and Cohen-Addad, Vincent and Lee, Euiwoong and Manurangsi, Pasin},
  title =	{{Improved Approximation Algorithms and Lower Bounds for Search-Diversification Problems}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.7},
  URN =		{urn:nbn:de:0030-drops-163481},
  doi =		{10.4230/LIPIcs.ICALP.2022.7},
  annote =	{Keywords: Approximation Algorithms, Complexity, Data Mining, Diversification}
}
Document
Track A: Algorithms, Complexity and Games
Two-Commodity Flow Is Equivalent to Linear Programming Under Nearly-Linear Time Reductions

Authors: Ming Ding, Rasmus Kyng, and Peng Zhang

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We give a nearly-linear time reduction that encodes any linear program as a 2-commodity flow problem with only a small blow-up in size. Under mild assumptions similar to those employed by modern fast solvers for linear programs, our reduction causes only a polylogarithmic multiplicative increase in the size of the program, and runs in nearly-linear time. Our reduction applies to high-accuracy approximation algorithms and exact algorithms. Given an approximate solution to the 2-commodity flow problem, we can extract a solution to the linear program in linear time with only a polynomial factor increase in the error. This implies that any algorithm that solves the 2-commodity flow problem can solve linear programs in essentially the same time. Given a directed graph with edge capacities and two source-sink pairs, the goal of the 2-commodity flow problem is to maximize the sum of the flows routed between the two source-sink pairs subject to edge capacities and flow conservation. A 2-commodity flow problem can be formulated as a linear program, which can be solved to high accuracy in almost the current matrix multiplication time (Cohen-Lee-Song JACM'21). Our reduction shows that linear programs can be approximately solved, to high accuracy, using 2-commodity flow as well. Our proof follows the outline of Itai’s polynomial-time reduction of a linear program to a 2-commodity flow problem (JACM’78). Itai’s reduction shows that exactly solving 2-commodity flow and exactly solving linear programming are polynomial-time equivalent. We improve Itai’s reduction to nearly preserve the problem representation size in each step. In addition, we establish an error bound for approximately solving each intermediate problem in the reduction, and show that the accumulated error is polynomially bounded. We remark that our reduction does not run in strongly polynomial time and that it is open whether 2-commodity flow and linear programming are equivalent in strongly polynomial time.

Cite as

Ming Ding, Rasmus Kyng, and Peng Zhang. Two-Commodity Flow Is Equivalent to Linear Programming Under Nearly-Linear Time Reductions. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 54:1-54:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ding_et_al:LIPIcs.ICALP.2022.54,
  author =	{Ding, Ming and Kyng, Rasmus and Zhang, Peng},
  title =	{{Two-Commodity Flow Is Equivalent to Linear Programming Under Nearly-Linear Time Reductions}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{54:1--54:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.54},
  URN =		{urn:nbn:de:0030-drops-163950},
  doi =		{10.4230/LIPIcs.ICALP.2022.54},
  annote =	{Keywords: Two-Commodity Flow Problems, Linear Programming, Fine-Grained Complexity}
}
Document
Multiscale Entropic Regularization for MTS on General Metric Spaces

Authors: Farzam Ebrahimnejad and James R. Lee

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present an O((log n)²)-competitive algorithm for metrical task systems (MTS) on any n-point metric space that is also 1-competitive for service costs. This matches the competitive ratio achieved by Bubeck, Cohen, Lee, and Lee (2019) and the refined competitive ratios obtained by Coester and Lee (2019). Those algorithms work by first randomly embedding the metric space into an ultrametric and then solving MTS there. In contrast, our algorithm is cast as regularized gradient descent where the regularizer is a multiscale metric entropy defined directly on the metric space. This answers an open question of Bubeck (Highlights of Algorithms, 2019).

Cite as

Farzam Ebrahimnejad and James R. Lee. Multiscale Entropic Regularization for MTS on General Metric Spaces. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 60:1-60:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ebrahimnejad_et_al:LIPIcs.ITCS.2022.60,
  author =	{Ebrahimnejad, Farzam and Lee, James R.},
  title =	{{Multiscale Entropic Regularization for MTS on General Metric Spaces}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{60:1--60:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.60},
  URN =		{urn:nbn:de:0030-drops-156568},
  doi =		{10.4230/LIPIcs.ITCS.2022.60},
  annote =	{Keywords: Metrical task systems, online algorithms, metric embeddings, convex optimization}
}
Document
APPROX
Hardness of Approximation for Euclidean k-Median

Authors: Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The Euclidean k-median problem is defined in the following manner: given a set 𝒳 of n points in d-dimensional Euclidean space ℝ^d, and an integer k, find a set C ⊂ ℝ^d of k points (called centers) such that the cost function Φ(C,𝒳) ≡ ∑_{x ∈ 𝒳} min_{c ∈ C} ‖x-c‖₂ is minimized. The Euclidean k-means problem is defined similarly by replacing the distance with squared Euclidean distance in the cost function. Various hardness of approximation results are known for the Euclidean k-means problem [Pranjal Awasthi et al., 2015; Euiwoong Lee et al., 2017; Vincent Cohen{-}Addad and {Karthik {C. S.}}, 2019]. However, no hardness of approximation result was known for the Euclidean k-median problem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of approximation result for the Euclidean k-median problem in O(log k) dimensional space. This solves an open question posed explicitly in the work of Awasthi et al. [Pranjal Awasthi et al., 2015]. Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers. That is, bi-criteria approximation algorithms are allowed to output β k centers (for constant β > 1) and the approximation ratio is computed with respect to the optimal k-means/k-median cost. We show the hardness of bi-criteria approximation result for the Euclidean k-median problem for any β < 1.015, assuming UGC. We also show a similar hardness of bi-criteria approximation result for the Euclidean k-means problem with a stronger bound of β < 1.28, again assuming UGC.

Cite as

Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal. Hardness of Approximation for Euclidean k-Median. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 4:1-4:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.APPROX/RANDOM.2021.4,
  author =	{Bhattacharya, Anup and Goyal, Dishant and Jaiswal, Ragesh},
  title =	{{Hardness of Approximation for Euclidean k-Median}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.4},
  URN =		{urn:nbn:de:0030-drops-146979},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.4},
  annote =	{Keywords: Hardness of approximation, bicriteria approximation, approximation algorithms, k-median, k-means}
}
Document
On the Security of Proofs of Sequential Work in a Post-Quantum World

Authors: Jeremiah Blocki, Seunghoon Lee, and Samson Zhou

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
A Proof of Sequential Work (PoSW) allows a prover to convince a resource-bounded verifier that the prover invested a substantial amount of sequential time to perform some underlying computation. PoSWs have many applications including time-stamping, blockchain design, and universally verifiable CPU benchmarks. Mahmoody, Moran, and Vadhan (ITCS 2013) gave the first construction of a PoSW in the random oracle model though the construction relied on expensive depth-robust graphs. In a recent breakthrough, Cohen and Pietrzak (EUROCRYPT 2018) gave an efficient PoSW construction that does not require expensive depth-robust graphs. In the classical parallel random oracle model, it is straightforward to argue that any successful PoSW attacker must produce a long ℋ-sequence and that any malicious party running in sequential time T-1 will fail to produce an ℋ-sequence of length T except with negligible probability. In this paper, we prove that any quantum attacker running in sequential time T-1 will fail to produce an ℋ-sequence except with negligible probability - even if the attacker submits a large batch of quantum queries in each round. The proof is substantially more challenging and highlights the power of Zhandry’s recent compressed oracle technique (CRYPTO 2019). We further extend this result to establish post-quantum security of a non-interactive PoSW obtained by applying the Fiat-Shamir transform to Cohen and Pietrzak’s efficient construction (EUROCRYPT 2018).

Cite as

Jeremiah Blocki, Seunghoon Lee, and Samson Zhou. On the Security of Proofs of Sequential Work in a Post-Quantum World. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 22:1-22:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blocki_et_al:LIPIcs.ITC.2021.22,
  author =	{Blocki, Jeremiah and Lee, Seunghoon and Zhou, Samson},
  title =	{{On the Security of Proofs of Sequential Work in a Post-Quantum World}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{22:1--22:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.22},
  URN =		{urn:nbn:de:0030-drops-143415},
  doi =		{10.4230/LIPIcs.ITC.2021.22},
  annote =	{Keywords: Proof of Sequential Work, Parallel Quantum Random Oracle Model, Lower Bounds}
}
Document
Pseudobinomiality of the Sticky Random Walk

Authors: Venkatesan Guruswami and Vinayak M. Kumar

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number M of marked vertices visited in a long n-step random walk strongly concentrates around the expected n/2 value. Surprisingly, it was recently shown that the parity of M also has exponentially small bias. Is there a common unification of these results? What other statistics about M resemble the binomial distribution (the Hamming weight of a random n-bit string)? To gain insight into such questions, we analyze a simpler model called the sticky random walk. This model is a natural stepping stone towards understanding expander random walks, and we also show that it is a necessary step. The sticky random walk starts with a random bit and then each subsequent bit independently equals the previous bit with probability (1+λ)/2. Here λ is the proxy for the expander’s (second largest) eigenvalue. Using Krawtchouk expansion of functions, we derive several probabilistic results about the sticky random walk. We show an asymptotically tight Θ(λ) bound on the total variation distance between the (Hamming weight of the) sticky walk and the binomial distribution. We prove that the correlation between the majority and parity bit of the sticky walk is bounded by O(n^{-1/4}). This lends hope to unifying Chernoff bounds and parity concentration, as well as establishing other interesting statistical properties, of expander random walks.

Cite as

Venkatesan Guruswami and Vinayak M. Kumar. Pseudobinomiality of the Sticky Random Walk. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 48:1-48:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.ITCS.2021.48,
  author =	{Guruswami, Venkatesan and Kumar, Vinayak M.},
  title =	{{Pseudobinomiality of the Sticky Random Walk}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{48:1--48:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.48},
  URN =		{urn:nbn:de:0030-drops-135870},
  doi =		{10.4230/LIPIcs.ITCS.2021.48},
  annote =	{Keywords: Expander Graphs, Fourier analysis, Markov Chains, Pseudorandomness, Random Walks}
}
Document
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration

Authors: Michael B. Cohen, Aaron Sidford, and Kevin Tian

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We show that standard extragradient methods (i.e. mirror prox [Arkadi Nemirovski, 2004] and dual extrapolation [Yurii Nesterov, 2007]) recover optimal accelerated rates for first-order minimization of smooth convex functions. To obtain this result we provide fine-grained characterization of the convergence rates of extragradient methods for solving monotone variational inequalities in terms of a natural condition we call relative Lipschitzness. We further generalize this framework to handle local and randomized notions of relative Lipschitzness and thereby recover rates for box-constrained 𝓁_∞ regression based on area convexity [Jonah Sherman, 2017] and complexity bounds achieved by accelerated (randomized) coordinate descent [Zeyuan {Allen Zhu} et al., 2016; Yurii Nesterov and Sebastian U. Stich, 2017] for smooth convex function minimization.

Cite as

Michael B. Cohen, Aaron Sidford, and Kevin Tian. Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 62:1-62:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ITCS.2021.62,
  author =	{Cohen, Michael B. and Sidford, Aaron and Tian, Kevin},
  title =	{{Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.62},
  URN =		{urn:nbn:de:0030-drops-136011},
  doi =		{10.4230/LIPIcs.ITCS.2021.62},
  annote =	{Keywords: Variational inequalities, minimax optimization, acceleration, 𝓁\underline∞ regression}
}
Document
Invited Talk
Convex Optimization and Dynamic Data Structure (Invited Talk)

Authors: Yin Tat Lee

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In the last three years, there are many breakthroughs in optimization such as nearly quadratic time algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of these algorithms are based on a careful combination of optimization techniques and dynamic data structures. In this talk, we will explain the framework underlying all the recent breakthroughs. Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.

Cite as

Yin Tat Lee. Convex Optimization and Dynamic Data Structure (Invited Talk). In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, p. 3:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.FSTTCS.2020.3,
  author =	{Lee, Yin Tat},
  title =	{{Convex Optimization and Dynamic Data Structure}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.3},
  URN =		{urn:nbn:de:0030-drops-132440},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.3},
  annote =	{Keywords: Convex Optimization, Dynamic Data Structure}
}
Document
Efficient Candidate Screening Under Multiple Tests and Implications for Fairness

Authors: Lee Cohen, Zachary C. Lipton, and Yishay Mansour

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
When recruiting job candidates, employers rarely observe their underlying skill level directly. Instead, they must administer a series of interviews and/or collate other noisy signals in order to estimate the worker’s skill. Traditional economics papers address screening models where employers access worker skill via a single noisy signal. In this paper, we extend this theoretical analysis to a multi-test setting, considering both Bernoulli and Gaussian models. We analyze the optimal employer policy both when the employer sets a fixed number of tests per candidate and when the employer can set a dynamic policy, assigning further tests adaptively based on results from the previous tests. To start, we characterize the optimal policy when employees constitute a single group, demonstrating some interesting trade-offs. Subsequently, we address the multi-group setting, demonstrating that when the noise levels vary across groups, a fundamental impossibility emerges whereby we cannot administer the same number of tests, subject candidates to the same decision rule, and yet realize the same outcomes in both groups. We show that by subjecting members of noisier groups to more tests, we can equalize the confusion matrix entries across groups, seemingly eliminating any disparate impact concerning outcomes.

Cite as

Lee Cohen, Zachary C. Lipton, and Yishay Mansour. Efficient Candidate Screening Under Multiple Tests and Implications for Fairness. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 1:1-1:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.FORC.2020.1,
  author =	{Cohen, Lee and Lipton, Zachary C. and Mansour, Yishay},
  title =	{{Efficient Candidate Screening Under Multiple Tests and Implications for Fairness}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.1},
  URN =		{urn:nbn:de:0030-drops-120179},
  doi =		{10.4230/LIPIcs.FORC.2020.1},
  annote =	{Keywords: algorithmic fairness, random walk, inference}
}
Document
Min-Cost Flow in Unit-Capacity Planar Graphs

Authors: Adam Karczmarz and Piotr Sankowski

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
In this paper we give an O~((nm)^(2/3) log C) time algorithm for computing min-cost flow (or min-cost circulation) in unit capacity planar multigraphs where edge costs are integers bounded by C. For planar multigraphs, this improves upon the best known algorithms for general graphs: the O~(m^(10/7) log C) time algorithm of Cohen et al. [SODA 2017], the O(m^(3/2) log(nC)) time algorithm of Gabow and Tarjan [SIAM J. Comput. 1989] and the O~(sqrt(n) m log C) time algorithm of Lee and Sidford [FOCS 2014]. In particular, our result constitutes the first known fully combinatorial algorithm that breaks the Omega(m^(3/2)) time barrier for min-cost flow problem in planar graphs. To obtain our result we first give a very simple successive shortest paths based scaling algorithm for unit-capacity min-cost flow problem that does not explicitly operate on dual variables. This algorithm also runs in O~(m^(3/2) log C) time for general graphs, and, to the best of our knowledge, it has not been described before. We subsequently show how to implement this algorithm faster on planar graphs using well-established tools: r-divisions and efficient algorithms for computing (shortest) paths in so-called dense distance graphs.

Cite as

Adam Karczmarz and Piotr Sankowski. Min-Cost Flow in Unit-Capacity Planar Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 66:1-66:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ESA.2019.66,
  author =	{Karczmarz, Adam and Sankowski, Piotr},
  title =	{{Min-Cost Flow in Unit-Capacity Planar Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{66:1--66:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.66},
  URN =		{urn:nbn:de:0030-drops-111878},
  doi =		{10.4230/LIPIcs.ESA.2019.66},
  annote =	{Keywords: minimum-cost flow, minimum-cost circulation, planar graphs}
}
Document
Fourier Bounds and Pseudorandom Generators for Product Tests

Authors: Chin Ho Lee

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We study the Fourier spectrum of functions f : {0,1}^{mk} -> {-1,0,1} which can be written as a product of k Boolean functions f_i on disjoint m-bit inputs. We prove that for every positive integer d, sum_{S subseteq [mk]: |S|=d} |hat{f_S}| = O(min{m, sqrt{m log(2k)}})^d . Our upper bounds are tight up to a constant factor in the O(*). Our proof uses Schur-convexity, and builds on a new "level-d inequality" that bounds above sum_{|S|=d} hat{f_S}^2 for any [0,1]-valued function f in terms of its expectation, which may be of independent interest. As a result, we construct pseudorandom generators for such functions with seed length O~(m + log(k/epsilon)), which is optimal up to polynomial factors in log m, log log k and log log(1/epsilon). Our generator in particular works for the well-studied class of combinatorial rectangles, where in addition we allow the bits to be read in any order. Even for this special case, previous generators have an extra O~(log(1/epsilon)) factor in their seed lengths. We also extend our results to functions f_i whose range is [-1,1].

Cite as

Chin Ho Lee. Fourier Bounds and Pseudorandom Generators for Product Tests. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 7:1-7:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.CCC.2019.7,
  author =	{Lee, Chin Ho},
  title =	{{Fourier Bounds and Pseudorandom Generators for Product Tests}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{7:1--7:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.7},
  URN =		{urn:nbn:de:0030-drops-108296},
  doi =		{10.4230/LIPIcs.CCC.2019.7},
  annote =	{Keywords: bounded independence plus noise, Fourier spectrum, product test, pseudorandom generators}
}
  • Refine by Author
  • 2 Cohen-Addad, Vincent
  • 2 Lee, Chin Ho
  • 2 Lee, Euiwoong
  • 1 Abboud, Amir
  • 1 Angrick, Sebastian
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Facility location and clustering
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Pseudorandomness and derandomization
  • 1 Computer systems organization
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • Show More...

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 2 Pseudorandomness
  • 2 approximation algorithms
  • 2 k-means
  • 2 k-median
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 5 2022
  • 4 2019
  • 4 2021
  • 2 2020
  • 2 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail