27 Search Results for "Colcombet, Thomas"


Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Invited Talk
A Brief History of History-Determinism (Invited Talk)

Authors: Karoliina Lehtinen

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
Most nondeterministic automata models are more expressive, or at least more succinct, than their deterministic counterparts; however, this comes at a cost, as deterministic automata tend to have better algorithmic properties. History-deterministic automata are an intermediate model that allows a restricted form of nondeterminism: all nondeterministic choices must be resolvable on-the-fly, with only the knowledge of the word prefix read so far - as opposed to general nondeterminism, which allows for guessing the future of the word. History-deterministic automata combine some of the algorithmic benefits of determinism with some of the increased power of nondeterminism, thus enjoying (some of) the best of both worlds. History-determinism, as it is understood today, has its roots in several independently invented notions: Kupferman, Safra and Vardi’s automata recognising tree languages derived from word languages [Kupferman et al., 2006] (a notion that has been later referred to as automata that are good-for-trees [Udi Boker et al., 2013]), Henzinger and Piterman’s good-for-games automata [Thomas Henzinger and Nir Piterman, 2006], and Colcombet’s history-deterministic automata, introduced in his work on regular cost-automata [Colcombet, 2009]. In the ω-regular setting, where they were initially most studied, the notions of good-for-trees, good-for-games and history-determinism are equivalent, despite differences in their definitions. The key algorithmic appeal of these automata is that like deterministic automata, they have good compositional properties. This makes them particularly useful for applications such as reactive synthesis, where composition of games and automata is at the heart of effective solutions. Since then, history-determinism has received its fair share of attention, not least because of its relevance to synthesis. Indeed it turns out to be a natural and useful form of nondeterminism more broadly, and can be generalised to all sorts of different automata models: alternating automata [Udi Boker and Karoliina Lehtinen, 2019], pushdown automata [Enzo Erlich et al., 2022; Enzo Erlich et al., 2022], timed automata [Thomas A. Henzinger et al., 2022; Sougata Bose et al., 2022], Parikh automata [Enzo Erlich et al., 2022], and quantiative automata [Udi Boker and Karoliina Lehtinen, 2021], to name a few. In each of these models, history-determinism offers some trade-offs between the power of nondeterminism and the algorithmic properties of determinism. In particular, depending on the model, they can be either more expressive or more succinct than their deterministic counterparts, while retaining better algorithmic properties - in particular with respect to deciding universality, language inclusion and games - than fully nondeterministic automata. The drive to extend history-determinism to more powerful automata models has also lead to a better understanding of the properties of these automata, of how they compare to related notions (such as good-for-games automata and determinisability by pruning), and of the various games and tools used to study them. This talk aims to give a broad introduction to the notion of history determinism as well as an overview of some of the recent developements on the topic. It will also highlight some of the many problems that remain open. It is loosely based on a recent survey, written jointly with Udi Boker, which gives an informal presentation of what are, in our view, the key aspects of history-determinism [Udi Boker and Karoliina Lehtinen, 2023].

Cite as

Karoliina Lehtinen. A Brief History of History-Determinism (Invited Talk). In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lehtinen:LIPIcs.STACS.2023.1,
  author =	{Lehtinen, Karoliina},
  title =	{{A Brief History of History-Determinism}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.1},
  URN =		{urn:nbn:de:0030-drops-176535},
  doi =		{10.4230/LIPIcs.STACS.2023.1},
  annote =	{Keywords: History-determinism, nondeterminism, automata, good-for-games}
}
Document
Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable

Authors: Wojciech Czerwiński and Piotr Hofman

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the problems of language inclusion and language equivalence for Vector Addition Systems with States (VASSes) with the acceptance condition defined by the set of accepting states (and more generally by some upward-closed conditions). In general the problem of language equivalence is undecidable even for one-dimensional VASSes, thus to get decidability we investigate restricted subclasses. On one hand we show that the problem of language inclusion of a VASS in k-ambiguous VASS (for any natural k) is decidable and even in Ackermann. On the other hand we prove that the language equivalence problem is Ackermann-hard already for deterministic VASSes. These two results imply Ackermann-completeness for language inclusion and equivalence in several possible restrictions. Some of our techniques can be also applied in much broader generality in infinite-state systems, namely for some subclass of well-structured transition systems.

Cite as

Wojciech Czerwiński and Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 16:1-16:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2022.16,
  author =	{Czerwi\'{n}ski, Wojciech and Hofman, Piotr},
  title =	{{Language Inclusion for Boundedly-Ambiguous Vector Addition Systems Is Decidable}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{16:1--16:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.16},
  URN =		{urn:nbn:de:0030-drops-170796},
  doi =		{10.4230/LIPIcs.CONCUR.2022.16},
  annote =	{Keywords: vector addition systems, language inclusion, language equivalence, determinism, unambiguity, bounded ambiguity, Petri nets, well-structured transition systems}
}
Document
A Complexity Approach to Tree Algebras: the Polynomial Case

Authors: Thomas Colcombet and Arthur Jaquard

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
In this paper, we consider infinitely sorted tree algebras recognising regular language of finite trees. We pursue their analysis under the angle of their asymptotic complexity, i.e. the asymptotic size of the sorts as a function of the number of variables involved. Our main result establishes an equivalence between the languages recognised by algebras of polynomial complexity and the languages that can be described by nominal word automata that parse linearisation of the trees. On the way, we show that for such algebras, having polynomial complexity corresponds to having uniformly boundedly many orbits under permutation of the variables, or having a notion of bounded support (in a sense similar to the one in nominal sets). We also show that being recognisable by an algebra of polynomial complexity is a decidable property for a regular language of trees.

Cite as

Thomas Colcombet and Arthur Jaquard. A Complexity Approach to Tree Algebras: the Polynomial Case. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.MFCS.2022.37,
  author =	{Colcombet, Thomas and Jaquard, Arthur},
  title =	{{A Complexity Approach to Tree Algebras: the Polynomial Case}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.37},
  URN =		{urn:nbn:de:0030-drops-168357},
  doi =		{10.4230/LIPIcs.MFCS.2022.37},
  annote =	{Keywords: Tree algebra, nominal automata, language theory}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games

Authors: Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In this paper, we look at good-for-games Rabin automata that recognise a Muller language (a language that is entirely characterised by the set of letters that appear infinitely often in each word). We establish that minimal such automata are exactly of the same size as the minimal memory required for winning Muller games that have this language as their winning condition. We show how to effectively construct such minimal automata. Finally, we establish that these automata can be exponentially more succinct than equivalent deterministic ones, thus proving as a consequence that chromatic memory for winning a Muller game can be exponentially larger than unconstrained memory.

Cite as

Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{casares_et_al:LIPIcs.ICALP.2022.117,
  author =	{Casares, Antonio and Colcombet, Thomas and Lehtinen, Karoliina},
  title =	{{On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.117},
  URN =		{urn:nbn:de:0030-drops-164580},
  doi =		{10.4230/LIPIcs.ICALP.2022.117},
  annote =	{Keywords: Infinite duration games, Muller games, Rabin conditions, omega-regular languages, memory in games, good-for-games automata}
}
Document
Unambiguity in Automata Theory (Dagstuhl Seminar 21452)

Authors: Thomas Colcombet, Karin Quaas, and Michał Skrzypczak

Published in: Dagstuhl Reports, Volume 11, Issue 10 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21452 "Unambiguity in Automata Theory". The aim of the seminar was to improve the understanding of the notion of unambiguity in automata theory, especially with respect to questions related to the expressive power, succinctness, and the tractability of unambiguous devices. The main motivation behind these studies is the hope that unambiguous machines can provide a golden balance between efficiency - sometimes not worse than for deterministic devices - and expressibility / succinctness, which often is similar to the general nondeterministic machines. These trade-offs become especially important in the models where the expressiveness or the decidability status of unambiguous machines is different from that of nondeterministic ones, as it is the case, e.g., for register automata.

Cite as

Thomas Colcombet, Karin Quaas, and Michał Skrzypczak. Unambiguity in Automata Theory (Dagstuhl Seminar 21452). In Dagstuhl Reports, Volume 11, Issue 10, pp. 57-71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{colcombet_et_al:DagRep.11.10.57,
  author =	{Colcombet, Thomas and Quaas, Karin and Skrzypczak, Micha{\l}},
  title =	{{Unambiguity in Automata Theory (Dagstuhl Seminar 21452)}},
  pages =	{57--71},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{11},
  number =	{10},
  editor =	{Colcombet, Thomas and Quaas, Karin and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.10.57},
  URN =		{urn:nbn:de:0030-drops-159282},
  doi =		{10.4230/DagRep.11.10.57},
  annote =	{Keywords: Unambiguity in Automata Theory, Dagstuhl Seminar}
}
Document
On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions

Authors: Antonio Casares

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
In this paper, we relate the problem of determining the chromatic memory requirements of Muller conditions with the minimisation of transition-based Rabin automata. Our first contribution is a proof of the NP-completeness of the minimisation of transition-based Rabin automata. Our second contribution concerns the memory requirements of games over graphs using Muller conditions. A memory structure is a finite state machine that implements a strategy and is updated after reading the edges of the game; the special case of chromatic memories being those structures whose update function only consider the colours of the edges. We prove that the minimal amount of chromatic memory required in games using a given Muller condition is exactly the size of a minimal Rabin automaton recognising this condition. Combining these two results, we deduce that finding the chromatic memory requirements of a Muller condition is NP-complete. This characterisation also allows us to prove that chromatic memories cannot be optimal in general, disproving a conjecture by Kopczyński.

Cite as

Antonio Casares. On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{casares:LIPIcs.CSL.2022.12,
  author =	{Casares, Antonio},
  title =	{{On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.12},
  URN =		{urn:nbn:de:0030-drops-157322},
  doi =		{10.4230/LIPIcs.CSL.2022.12},
  annote =	{Keywords: Automata on Infinite Words, Games on Graphs, Arena-Independent Memory, Complexity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Optimal Transformations of Games and Automata Using Muller Conditions

Authors: Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We consider the following question: given an automaton or a game with a Muller condition, how can we efficiently construct an equivalent one with a parity condition? There are several examples of such transformations in the literature, including in the determinisation of Büchi automata. We define a new transformation called the alternating cycle decomposition, inspired and extending Zielonka’s construction. Our transformation operates on transition systems, encompassing both automata and games, and preserves semantic properties through the existence of a locally bijective morphism. We show a strong optimality result: the obtained parity transition system is minimal both in number of states and number of priorities with respect to locally bijective morphisms. We give two applications: the first is related to the determinisation of Büchi automata, and the second is to give crisp characterisations on the possibility of relabelling automata with different acceptance conditions.

Cite as

Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. Optimal Transformations of Games and Automata Using Muller Conditions. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 123:1-123:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{casares_et_al:LIPIcs.ICALP.2021.123,
  author =	{Casares, Antonio and Colcombet, Thomas and Fijalkow, Nathana\"{e}l},
  title =	{{Optimal Transformations of Games and Automata Using Muller Conditions}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{123:1--123:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.123},
  URN =		{urn:nbn:de:0030-drops-141928},
  doi =		{10.4230/LIPIcs.ICALP.2021.123},
  annote =	{Keywords: Automata over infinite words, Omega regular languages, Determinisation of automata}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complexity Approach to Tree Algebras: the Bounded Case

Authors: Thomas Colcombet and Arthur Jaquard

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In this paper, we initiate a study of the expressive power of tree algebras, and more generally infinitely sorted algebras, based on their asymptotic complexity. We provide a characterization of the expressiveness of tree algebras of bounded complexity. Tree algebras in many of their forms, such as clones, hyperclones, operads, etc, as well as other kind of algebras, are infinitely sorted: the carrier is a multi sorted set indexed by a parameter that can be interpreted as the number of variables or hole types. Finite such algebras - meaning when all sorts are finite - can be classified depending on the asymptotic size of the carrier sets as a function of the parameter, that we call the complexity of the algebra. This naturally defines the notions of algebras of bounded, linear, polynomial, exponential or doubly exponential complexity... We initiate in this work a program of analysis of the complexity of infinitely sorted algebras. Our main result precisely characterizes the tree algebras of bounded complexity based on the languages that they recognize as Boolean closures of simple languages. Along the way, we prove that such algebras that are syntactic (minimal for a language) are exactly those in which, as soon as there are sufficiently many variables, the elements are invariant under permutation of the variables.

Cite as

Thomas Colcombet and Arthur Jaquard. A Complexity Approach to Tree Algebras: the Bounded Case. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 127:1-127:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.ICALP.2021.127,
  author =	{Colcombet, Thomas and Jaquard, Arthur},
  title =	{{A Complexity Approach to Tree Algebras: the Bounded Case}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{127:1--127:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.127},
  URN =		{urn:nbn:de:0030-drops-141966},
  doi =		{10.4230/LIPIcs.ICALP.2021.127},
  annote =	{Keywords: Tree algebra, infinite tree, language theory}
}
Document
Learning Automata and Transducers: A Categorical Approach

Authors: Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
In this paper, we present a categorical approach to learning automata over words, in the sense of the L*-algorithm of Angluin. This yields a new generic L*-like algorithm which can be instantiated for learning deterministic automata, automata weighted over fields, as well as subsequential transducers. The generic nature of our algorithm is obtained by adopting an approach in which automata are simply functors from a particular category representing words to a "computation category". We establish that the sufficient properties for yielding the existence of minimal automata (that were disclosed in a previous paper), in combination with some additional hypotheses relative to termination, ensure the correctness of our generic algorithm.

Cite as

Thomas Colcombet, Daniela Petrişan, and Riccardo Stabile. Learning Automata and Transducers: A Categorical Approach. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.CSL.2021.15,
  author =	{Colcombet, Thomas and Petri\c{s}an, Daniela and Stabile, Riccardo},
  title =	{{Learning Automata and Transducers: A Categorical Approach}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.15},
  URN =		{urn:nbn:de:0030-drops-134498},
  doi =		{10.4230/LIPIcs.CSL.2021.15},
  annote =	{Keywords: Automata, transducer, learning, category}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Cost Automata, Safe Schemes, and Downward Closures

Authors: David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed λY-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes.

Cite as

David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys. Cost Automata, Safe Schemes, and Downward Closures. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 109:1-109:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{barozzini_et_al:LIPIcs.ICALP.2020.109,
  author =	{Barozzini, David and Clemente, Lorenzo and Colcombet, Thomas and Parys, Pawe{\l}},
  title =	{{Cost Automata, Safe Schemes, and Downward Closures}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{109:1--109:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.109},
  URN =		{urn:nbn:de:0030-drops-125169},
  doi =		{10.4230/LIPIcs.ICALP.2020.109},
  annote =	{Keywords: Cost logics, cost automata, downward closures, higher-order recursion schemes, safe recursion schemes}
}
Document
Unambiguous Separators for Tropical Tree Automata

Authors: Thomas Colcombet and Sylvain Lombardy

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
In this paper we show that given a max-plus automaton (over trees, and with real weights) computing a function f and a min-plus automaton (similar) computing a function g such that f ⩽ g, there exists effectively an unambiguous tropical automaton computing h such that f ⩽ h ⩽ g. This generalizes a result of Lombardy and Mairesse of 2006 stating that series which are both max-plus and min-plus rational are unambiguous. This generalization goes in two directions: trees are considered instead of words, and separation is established instead of characterization (separation implies characterization). The techniques in the two proofs are very different.

Cite as

Thomas Colcombet and Sylvain Lombardy. Unambiguous Separators for Tropical Tree Automata. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 32:1-32:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.STACS.2020.32,
  author =	{Colcombet, Thomas and Lombardy, Sylvain},
  title =	{{Unambiguous Separators for Tropical Tree Automata}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{32:1--32:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.32},
  URN =		{urn:nbn:de:0030-drops-118933},
  doi =		{10.4230/LIPIcs.STACS.2020.32},
  annote =	{Keywords: Tree automata, Tropical semiring, Separation, Unambiguity}
}
Document
Good for Games Automata: From Nondeterminism to Alternation

Authors: Udi Boker and Karoliina Lehtinen

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
A word automaton recognizing a language L is good for games (GFG) if its composition with any game with winning condition L preserves the game’s winner. While all deterministic automata are GFG, some nondeterministic automata are not. There are various other properties that are used in the literature for defining that a nondeterministic automaton is GFG, including "history-deterministic", "compliant with some letter game", "good for trees", and "good for composition with other automata". The equivalence of these properties has not been formally shown. We generalize all of these definitions to alternating automata and show their equivalence. We further show that alternating GFG automata are as expressive as deterministic automata with the same acceptance conditions and indices. We then show that alternating GFG automata over finite words, and weak automata over infinite words, are not more succinct than deterministic automata, and that determinizing Büchi and co-Büchi alternating GFG automata involves a 2^{Theta(n)} state blow-up. We leave open the question of whether alternating GFG automata of stronger acceptance conditions allow for doubly-exponential succinctness compared to deterministic automata.

Cite as

Udi Boker and Karoliina Lehtinen. Good for Games Automata: From Nondeterminism to Alternation. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.CONCUR.2019.19,
  author =	{Boker, Udi and Lehtinen, Karoliina},
  title =	{{Good for Games Automata: From Nondeterminism to Alternation}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.19},
  URN =		{urn:nbn:de:0030-drops-109212},
  doi =		{10.4230/LIPIcs.CONCUR.2019.19},
  annote =	{Keywords: Good for games, history-determinism, alternation}
}
Document
Track A: Algorithms, Complexity and Games
On Reachability Problems for Low-Dimensional Matrix Semigroups

Authors: Thomas Colcombet, Joël Ouaknine, Pavel Semukhin, and James Worrell

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We consider the Membership and the Half-Space Reachability problems for matrices in dimensions two and three. Our first main result is that the Membership Problem is decidable for finitely generated sub-semigroups of the Heisenberg group over rational numbers. Furthermore, we prove two decidability results for the Half-Space Reachability Problem. Namely, we show that this problem is decidable for sub-semigroups of GL(2,Z) and of the Heisenberg group over rational numbers.

Cite as

Thomas Colcombet, Joël Ouaknine, Pavel Semukhin, and James Worrell. On Reachability Problems for Low-Dimensional Matrix Semigroups. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.ICALP.2019.44,
  author =	{Colcombet, Thomas and Ouaknine, Jo\"{e}l and Semukhin, Pavel and Worrell, James},
  title =	{{On Reachability Problems for Low-Dimensional Matrix Semigroups}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.44},
  URN =		{urn:nbn:de:0030-drops-106209},
  doi =		{10.4230/LIPIcs.ICALP.2019.44},
  annote =	{Keywords: membership problem, half-space reachability problem, matrix semigroups, Heisenberg group, general linear group}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Boundedness of Conjunctive Regular Path Queries (Track B: Automata, Logic, Semantics, and Theory of Programming)

Authors: Pablo Barceló, Diego Figueira, and Miguel Romero

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study the boundedness problem for unions of conjunctive regular path queries with inverses (UC2RPQs). This is the problem of, given a UC2RPQ, checking whether it is equivalent to a union of conjunctive queries (UCQ). We show the problem to be ExpSpace-complete, thus coinciding with the complexity of containment for UC2RPQs. As a corollary, when a UC2RPQ is bounded, it is equivalent to a UCQ of at most triple-exponential size, and in fact we show that this bound is optimal. We also study better behaved classes of UC2RPQs, namely acyclic UC2RPQs of bounded thickness, and strongly connected UCRPQs, whose boundedness problem is, respectively, PSpace-complete and Pi_2^P-complete. Most upper bounds exploit results on limitedness for distance automata, in particular extending the model with alternation and two-wayness, which may be of independent interest.

Cite as

Pablo Barceló, Diego Figueira, and Miguel Romero. Boundedness of Conjunctive Regular Path Queries (Track B: Automata, Logic, Semantics, and Theory of Programming). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 104:1-104:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{barcelo_et_al:LIPIcs.ICALP.2019.104,
  author =	{Barcel\'{o}, Pablo and Figueira, Diego and Romero, Miguel},
  title =	{{Boundedness of Conjunctive Regular Path Queries}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{104:1--104:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.104},
  URN =		{urn:nbn:de:0030-drops-106803},
  doi =		{10.4230/LIPIcs.ICALP.2019.104},
  annote =	{Keywords: regular path queries, boundedness, limitedness, distance automata}
}
  • Refine by Author
  • 21 Colcombet, Thomas
  • 4 Manuel, Amaldev
  • 3 Casares, Antonio
  • 3 Lehtinen, Karoliina
  • 2 Fijalkow, Nathanaël
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 boundedness
  • 3 decidability
  • 2 Automata
  • 2 Data words
  • 2 Tree algebra
  • Show More...

  • Refine by Type
  • 27 document

  • Refine by Publication Year
  • 5 2022
  • 3 2016
  • 3 2019
  • 3 2021
  • 2 2013
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail