60 Search Results for "David, Laurent"


Document
Towards Solid Abelian Groups: A Formal Proof of Nöbeling’s Theorem

Authors: Dagur Asgeirsson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Condensed mathematics, developed by Clausen and Scholze over the last few years, is a new way of studying the interplay between algebra and geometry. It replaces the concept of a topological space by a more sophisticated but better-behaved idea, namely that of a condensed set. Central to the theory are solid abelian groups and liquid vector spaces, analogues of complete topological groups. Nöbeling’s theorem, a surprising result from the 1960s about the structure of the abelian group of continuous maps from a profinite space to the integers, is a crucial ingredient in the theory of solid abelian groups; without it one cannot give any nonzero examples of solid abelian groups. We discuss a recently completed formalisation of this result in the Lean theorem prover, and give a more detailed proof than those previously available in the literature. The proof is somewhat unusual in that it requires induction over ordinals - a technique which has not previously been used to a great extent in formalised mathematics.

Cite as

Dagur Asgeirsson. Towards Solid Abelian Groups: A Formal Proof of Nöbeling’s Theorem. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{asgeirsson:LIPIcs.ITP.2024.6,
  author =	{Asgeirsson, Dagur},
  title =	{{Towards Solid Abelian Groups: A Formal Proof of N\"{o}beling’s Theorem}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.6},
  URN =		{urn:nbn:de:0030-drops-207347},
  doi =		{10.4230/LIPIcs.ITP.2024.6},
  annote =	{Keywords: Condensed mathematics, N\"{o}beling’s theorem, Lean, Mathlib, Interactive theorem proving}
}
Document
End-To-End Formal Verification of a Fast and Accurate Floating-Point Approximation

Authors: Florian Faissole, Paul Geneau de Lamarlière, and Guillaume Melquiond

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Designing an efficient yet accurate floating-point approximation of a mathematical function is an intricate and error-prone process. This warrants the use of formal methods, especially formal proof, to achieve some degree of confidence in the implementation. Unfortunately, the lack of automation or its poor interplay with the more manual parts of the proof makes it way too costly in practice. This article revisits the issue by proposing a methodology and some dedicated automation, and applies them to the use case of a faithful binary64 approximation of exponential. The peculiarity of this use case is that the target of the formal verification is not a simple modeling of an external code; it is an actual floating-point function defined in the logic of the Coq proof assistant, which is thus usable inside proofs once its correctness has been fully verified. This function presents all the attributes of a state-of-the-art implementation: bit-level manipulations, large tables of constants, obscure floating-point transformations, exceptional values, etc. This function has been integrated into the proof strategies of the CoqInterval library, bringing a 20× speedup with respect to the previous implementation.

Cite as

Florian Faissole, Paul Geneau de Lamarlière, and Guillaume Melquiond. End-To-End Formal Verification of a Fast and Accurate Floating-Point Approximation. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{faissole_et_al:LIPIcs.ITP.2024.14,
  author =	{Faissole, Florian and Geneau de Lamarli\`{e}re, Paul and Melquiond, Guillaume},
  title =	{{End-To-End Formal Verification of a Fast and Accurate Floating-Point Approximation}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.14},
  URN =		{urn:nbn:de:0030-drops-207420},
  doi =		{10.4230/LIPIcs.ITP.2024.14},
  annote =	{Keywords: Program verification, floating-point arithmetic, formal proof, automated reasoning, mathematical library}
}
Document
A Coq Formalization of Taylor Models and Power Series for Solving Ordinary Differential Equations

Authors: Sewon Park and Holger Thies

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
In exact real computation real numbers are manipulated exactly without round-off errors, making it well-suited for high precision verified computation. In recent work we propose an axiomatic formalization of exact real computation in the Coq theorem prover. The formalization admits an extended extraction mechanism that lets us extract computational content from constructive parts of proofs to efficient programs built on top of AERN, a Haskell library for exact real computation. Many processes in science and engineering are modeled by ordinary differential equations (ODEs), and often safety-critical applications depend on computing their solutions correctly. The primary goal of the current work is to extend our framework to spaces of functions and to support computation of solutions to ODEs and other essential operators. In numerical mathematics, the most common way to represent continuous functions is to use polynomial approximations. This can be modeled by so-called Taylor models, that encode a function as a polynomial and a rigorous error-bound over some domain. We define types of classical functions that do not hold any computational content and formalize Taylor models to computationally approximate those classical functions. Classical functions are defined in a way to admit classical principles in their constructions and verification. We define various basic operations on Taylor models and verify their correctness based on the classical functions that they approximate. We then shift our interest to analytic functions as a generalization of Taylor models where polynomials are replaced by infinite power series. We use the formalization to develop a theory of non-linear polynomial ODEs. From the proofs we can extract certified exact real computation programs that compute solutions of ODEs on some time interval up to any precision.

Cite as

Sewon Park and Holger Thies. A Coq Formalization of Taylor Models and Power Series for Solving Ordinary Differential Equations. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{park_et_al:LIPIcs.ITP.2024.30,
  author =	{Park, Sewon and Thies, Holger},
  title =	{{A Coq Formalization of Taylor Models and Power Series for Solving Ordinary Differential Equations}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.30},
  URN =		{urn:nbn:de:0030-drops-207581},
  doi =		{10.4230/LIPIcs.ITP.2024.30},
  annote =	{Keywords: Exact real computation, Taylor models, Analytic functions, Computable analysis, Program extraction}
}
Document
Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model

Authors: Andrew Tolmach, Chris Chhak, and Sean Anderson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We propose a concrete ("pointer as integer") memory semantics for C that supports verified compilation to a target environment having simple "public vs. private" data protection based on tagging or sandboxing (such as the WebAssembly virtual machine). Our semantics gives definition to a range of legacy programming idioms that cause undefined behavior in standard C, and are not covered by existing verified compilers, but that often work in practice. Compiler correctness in this context implies that target programs are secure against all control-flow attacks (although not against data-only attacks). To avoid tying our semantics too closely to particular compiler implementation choices, it is parameterized by a novel form of oracle that non-deterministically chooses the addresses of stack and heap allocations. As a proof-of-concept, we formalize a small RTL-like language and verify two-way refinement for a compiler from this language to a low-level machine and runtime system with hardware tagging. Our Coq formalization and proofs are provided as supplementary material.

Cite as

Andrew Tolmach, Chris Chhak, and Sean Anderson. Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{tolmach_et_al:LIPIcs.ITP.2024.36,
  author =	{Tolmach, Andrew and Chhak, Chris and Anderson, Sean},
  title =	{{Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.36},
  URN =		{urn:nbn:de:0030-drops-207643},
  doi =		{10.4230/LIPIcs.ITP.2024.36},
  annote =	{Keywords: Compiler verification, C language semantics, Coq proof assistant}
}
Document
The Functor of Points Approach to Schemes in Cubical Agda

Authors: Max Zeuner and Matthias Hutzler

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present a formalization of quasi-compact and quasi-separated schemes (qcqs-schemes) in the Cubical Agda proof assistant. We follow Grothendieck’s functor of points approach, which defines schemes, the quintessential notion of modern algebraic geometry, as certain well-behaved functors from commutative rings to sets. This approach is often regarded as conceptually simpler than the standard approach of defining schemes as locally ringed spaces, but to our knowledge it has not yet been adopted in formalizations of algebraic geometry. We build upon a previous formalization of the so-called Zariski lattice associated to a commutative ring in order to define the notion of compact open subfunctor. This allows for a concise definition of qcqs-schemes, streamlining the usual presentation as e.g. given in the standard textbook of Demazure and Gabriel. It also lets us obtain a fully constructive proof that compact open subfunctors of affine schemes are qcqs-schemes.

Cite as

Max Zeuner and Matthias Hutzler. The Functor of Points Approach to Schemes in Cubical Agda. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zeuner_et_al:LIPIcs.ITP.2024.38,
  author =	{Zeuner, Max and Hutzler, Matthias},
  title =	{{The Functor of Points Approach to Schemes in Cubical Agda}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.38},
  URN =		{urn:nbn:de:0030-drops-207667},
  doi =		{10.4230/LIPIcs.ITP.2024.38},
  annote =	{Keywords: Schemes, Algebraic Geometry, Category Theory, Cubical Agda, Homotopy Type Theory and Univalent Foundations, Constructive Mathematics}
}
Document
MITL Model Checking via Generalized Timed Automata and a New Liveness Algorithm

Authors: S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
The translation of Metric Interval Temporal Logic (MITL) to timed automata is a topic that has been extensively studied. A key challenge here is the conversion of future modalities into equivalent automata. Typical conversions equip the automata with a guess-and-check mechanism to ascertain the truth of future modalities. Guess-and-check can be naturally implemented via alternation. However, since timed automata tools do not handle alternation, existing methods perform an additional step of converting the alternating timed automata into timed automata. This "de-alternation" step proceeds by an intricate finite abstraction of the space of configurations of the alternating automaton. Recently, a model of generalized timed automata (GTA) has been proposed. The model comes with several powerful additional features, and yet, the best known zone-based reachability algorithms for timed automata have been extended to the GTA model, with the same complexity for all the zone operations. An attractive feature of GTAs is the presence of future clocks which act like timers that guess a time to an event and stay alive until a timeout. Future clocks seem to provide another natural way to implement the guess-and-check: start the future clock with a guessed time to an event and check its occurrence using a timeout. Indeed, using this feature, we provide a new concise translation from MITL to GTA. In particular, for the timed until modality, our translation offers an exponential improvement w.r.t. the state-of-the-art. Thanks to this conversion, MITL model checking reduces to checking liveness for GTAs. However, no liveness algorithm is known for GTAs. Due to the presence of future clocks, there is no finite time-abstract bisimulation (region equivalence) for GTAs, whereas liveness algorithms for timed automata crucially rely on the presence of the finite region equivalence. As our second contribution, we provide a new zone-based algorithm for checking Büchi non-emptiness in GTAs, which circumvents this fundamental challenge.

Cite as

S. Akshay, Paul Gastin, R. Govind, and B. Srivathsan. MITL Model Checking via Generalized Timed Automata and a New Liveness Algorithm. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.CONCUR.2024.5,
  author =	{Akshay, S. and Gastin, Paul and Govind, R. and Srivathsan, B.},
  title =	{{MITL Model Checking via Generalized Timed Automata and a New Liveness Algorithm}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.5},
  URN =		{urn:nbn:de:0030-drops-207774},
  doi =		{10.4230/LIPIcs.CONCUR.2024.5},
  annote =	{Keywords: MITL model checking, timed automata, zones, liveness}
}
Document
Passive Learning of Regular Data Languages in Polynomial Time and Data

Authors: Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A regular data language is a language over an infinite alphabet recognized by a deterministic register automaton (DRA), as defined by Benedikt, Ley and Puppis. The later model, which is expressively equivalent to the deterministic finite-memory automata introduced earlier by Francez and Kaminsky, enjoys unique minimal automata (up to isomorphism), based on a Myhill-Nerode theorem. In this paper, we introduce a polynomial time passive learning algorithm for regular data languages from positive and negative samples. Following Gold’s model for learning languages, we prove that our algorithm can identify in the limit any regular data language L, i.e. it returns a minimal DRA recognizing L if a characteristic sample set for L is provided as input. We prove that there exist characteristic sample sets of polynomial size with respect to the size of the minimal DRA recognizing L. To the best of our knowledge, it is the first passive learning algorithm for data languages, and the first learning algorithm which is fully polynomial, both with respect to time complexity and size of the characteristic sample set.

Cite as

Mrudula Balachander, Emmanuel Filiot, and Raffaella Gentilini. Passive Learning of Regular Data Languages in Polynomial Time and Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balachander_et_al:LIPIcs.CONCUR.2024.10,
  author =	{Balachander, Mrudula and Filiot, Emmanuel and Gentilini, Raffaella},
  title =	{{Passive Learning of Regular Data Languages in Polynomial Time and Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.10},
  URN =		{urn:nbn:de:0030-drops-207829},
  doi =		{10.4230/LIPIcs.CONCUR.2024.10},
  annote =	{Keywords: Register automata, passive learning, automata over infinite alphabets}
}
Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Weighted Basic Parallel Processes and Combinatorial Enumeration

Authors: Lorenzo Clemente

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Cite as

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clemente:LIPIcs.CONCUR.2024.18,
  author =	{Clemente, Lorenzo},
  title =	{{Weighted Basic Parallel Processes and Combinatorial Enumeration}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.18},
  URN =		{urn:nbn:de:0030-drops-207903},
  doi =		{10.4230/LIPIcs.CONCUR.2024.18},
  annote =	{Keywords: weighted automata, combinatorial enumeration, shuffle, algebraic differential equations, process algebra, basic parallel processes, species of structures}
}
Document
Minimising the Probabilistic Bisimilarity Distance

Authors: Stefan Kiefer and Qiyi Tang

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications to the verification of probabilistic noninterference in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs, in particular, whether there exist strategies such that the probabilistic bisimilarity distance between the induced labelled Markov chains is less than a given rational number, both for memoryless strategies and general strategies. We show that the distance minimisation problem is ∃ℝ-complete for memoryless strategies and undecidable for general strategies. We also study the computational complexity of the qualitative problem about making the distance less than one. This problem is known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for general strategies.

Cite as

Stefan Kiefer and Qiyi Tang. Minimising the Probabilistic Bisimilarity Distance. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.CONCUR.2024.32,
  author =	{Kiefer, Stefan and Tang, Qiyi},
  title =	{{Minimising the Probabilistic Bisimilarity Distance}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.32},
  URN =		{urn:nbn:de:0030-drops-208049},
  doi =		{10.4230/LIPIcs.CONCUR.2024.32},
  annote =	{Keywords: Markov decision processes, Markov chains}
}
Document
A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs

Authors: Marnix Suilen, Marck van der Vegt, and Sebastian Junges

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Markov Decision Processes (MDPs) model systems with uncertain transition dynamics. Multiple-environment MDPs (MEMDPs) extend MDPs. They intuitively reflect finite sets of MDPs that share the same state and action spaces but differ in the transition dynamics. The key objective in MEMDPs is to find a single strategy that satisfies a given objective in every associated MDP. The main result of this paper is PSPACE-completeness for almost-sure Rabin objectives in MEMDPs. This result clarifies the complexity landscape for MEMDPs and contrasts with results for the more general class of partially observable MDPs (POMDPs), where almost-sure reachability is already EXP-complete, and almost-sure Rabin objectives are undecidable.

Cite as

Marnix Suilen, Marck van der Vegt, and Sebastian Junges. A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{suilen_et_al:LIPIcs.CONCUR.2024.40,
  author =	{Suilen, Marnix and van der Vegt, Marck and Junges, Sebastian},
  title =	{{A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.40},
  URN =		{urn:nbn:de:0030-drops-208120},
  doi =		{10.4230/LIPIcs.CONCUR.2024.40},
  annote =	{Keywords: Markov Decision Processes, partial observability, linear-time Objectives}
}
Document
A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design

Authors: Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
As quantum technology is advancing, the efficient design of quantum circuits has become an important area of research. This paper provides an introduction to the MCT quantum circuit design problem for reversible Boolean functions without assuming a prior background in quantum computing. While this is a well-studied problem, optimization models that minimize the true objective have only been explored recently. This paper introduces a new optimization model and symmetry-breaking constraints that improve solving time by up to two orders of magnitude compared to earlier work when a Constraint Programming solver is used. Experiments with up to seven qubits and using up to 15 quantum gates result in several new best-known circuits, obtained by any method, for well-known benchmarks. Finally, an extensive comparison with other approaches shows that optimization models may require more time but can provide superior circuits with optimality guarantees.

Cite as

Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck. A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.CP.2024.16,
  author =	{Jung, Jihye and Dalmeijer, Kevin and Van Hentenryck, Pascal},
  title =	{{A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{16:1--16:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.16},
  URN =		{urn:nbn:de:0030-drops-207010},
  doi =		{10.4230/LIPIcs.CP.2024.16},
  annote =	{Keywords: Constraint Programming, Quantum Circuit Design, Reversible Circuits}
}
Document
Learning Lagrangian Multipliers for the Travelling Salesman Problem

Authors: Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Lagrangian relaxation is a versatile mathematical technique employed to relax constraints in an optimization problem, enabling the generation of dual bounds to prove the optimality of feasible solutions and the design of efficient propagators in constraint programming (such as the weighted circuit constraint). However, the conventional process of deriving Lagrangian multipliers (e.g., using subgradient methods) is often computationally intensive, limiting its practicality for large-scale or time-sensitive problems. To address this challenge, we propose an innovative unsupervised learning approach that harnesses the capabilities of graph neural networks to exploit the problem structure, aiming to generate accurate Lagrangian multipliers efficiently. We apply this technique to the well-known Held-Karp Lagrangian relaxation for the traveling salesman problem. The core idea is to predict accurate Lagrangian multipliers and to employ them as a warm start for generating Held-Karp relaxation bounds. These bounds are subsequently utilized to enhance the filtering process carried out by branch-and-bound algorithms. In contrast to much of the existing literature, which primarily focuses on finding feasible solutions, our approach operates on the dual side, demonstrating that learning can also accelerate the proof of optimality. We conduct experiments across various distributions of the metric traveling salesman problem, considering instances with up to 200 cities. The results illustrate that our approach can improve the filtering level of the weighted circuit global constraint, reduce the optimality gap by a factor two for unsolved instances up to a timeout, and reduce the execution time for solved instances by 10%.

Cite as

Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau. Learning Lagrangian Multipliers for the Travelling Salesman Problem. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{parjadis_et_al:LIPIcs.CP.2024.22,
  author =	{Parjadis, Augustin and Cappart, Quentin and Dilkina, Bistra and Ferber, Aaron and Rousseau, Louis-Martin},
  title =	{{Learning Lagrangian Multipliers for the Travelling Salesman Problem}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.22},
  URN =		{urn:nbn:de:0030-drops-207076},
  doi =		{10.4230/LIPIcs.CP.2024.22},
  annote =	{Keywords: Lagrangian relaxation, unsupervised learning, graph neural network}
}
Document
CP for Bin Packing with Multi-Core and GPUs

Authors: Fabio Tardivo, Laurent Michel, and Enrico Pontelli

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
The BinPacking constraint models the requirements of many logistics, resource allocation, and production scheduling applications. This paper explores new avenues based on the impressive computational power of modern GPUs to propagate the BinPacking constraint. This work showcases how the perspective of massive parallelization can lead to novel approaches, such as the use of a portfolio of lower bounds, to enhance the pruning of the BinPacking constraints. It delivers insights into the design choices and challenges presented by GPU platform for constraint propagation. The paper evaluates a GPU-accelerated propagator against both sequential and parallel CPU versions, as well as state-of-the-art approaches. Comparisons across various benchmarks from the literature show strong performances with respect to both CPU versions and the standard pruning approach. When compared to techniques based on Linear Programming, our approach proves valuable for large instances or when spending extensive time to obtain the best possible bound is not convenient.

Cite as

Fabio Tardivo, Laurent Michel, and Enrico Pontelli. CP for Bin Packing with Multi-Core and GPUs. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 28:1-28:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{tardivo_et_al:LIPIcs.CP.2024.28,
  author =	{Tardivo, Fabio and Michel, Laurent and Pontelli, Enrico},
  title =	{{CP for Bin Packing with Multi-Core and GPUs}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{28:1--28:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.28},
  URN =		{urn:nbn:de:0030-drops-207138},
  doi =		{10.4230/LIPIcs.CP.2024.28},
  annote =	{Keywords: Constraint Propagation, Bin Packing, Parallelism, GPU, Lower Bounds}
}
Document
Short Paper
Black-Box Value Heuristics for Solving Optimization Problems with Constraint Programming (Short Paper)

Authors: Augustin Delecluse and Pierre Schaus

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Significant research efforts have focused on black-box variable selection, with less attention given to value heuristics. An ideal value heuristic enables depth-first-search to prioritize high-quality solutions first. The Bound-Impact Value Selection achieves this goal through a look-ahead strategy, trying every value of the selected variable and ranking them based on their impact on the objective. However, this method is generally too computationally intensive for the entire search tree. We introduce two simple yet powerful modifications to improve its scalability. First, a lighter fix point computation involving only the constraints on the shortest path in the constraint graph between the variable and the objective. Second, a reverse look-ahead strategy optimistically fixes the objective variable to its minimum in order to prioritize the remaining values. These two ideas have been empirically validated on a range of academic problems and in the XCSP³ competition, demonstrating significant improvements in scalability.

Cite as

Augustin Delecluse and Pierre Schaus. Black-Box Value Heuristics for Solving Optimization Problems with Constraint Programming (Short Paper). In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 36:1-36:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{delecluse_et_al:LIPIcs.CP.2024.36,
  author =	{Delecluse, Augustin and Schaus, Pierre},
  title =	{{Black-Box Value Heuristics for Solving Optimization Problems with Constraint Programming}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{36:1--36:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.36},
  URN =		{urn:nbn:de:0030-drops-207214},
  doi =		{10.4230/LIPIcs.CP.2024.36},
  annote =	{Keywords: Constraint Programming, Value Selection, Look-Ahead, Optimization}
}
  • Refine by Author
  • 2 Accattoli, Beniamino
  • 2 Baelde, David
  • 2 Viennot, Laurent
  • 1 Akgün, Özgür
  • 1 Akshay, S.
  • Show More...

  • Refine by Classification
  • 8 Theory of computation → Logic and verification
  • 7 Theory of computation → Constraint and logic programming
  • 4 Mathematics of computing → Graph algorithms
  • 4 Theory of computation → Automated reasoning
  • 4 Theory of computation → Formal languages and automata theory
  • Show More...

  • Refine by Keyword
  • 3 Lambda calculus
  • 2 Constraint Programming
  • 2 Cubical Agda
  • 2 Robustness
  • 2 algorithms
  • Show More...

  • Refine by Type
  • 60 document

  • Refine by Publication Year
  • 54 2024
  • 2 2016
  • 2 2021
  • 2 2023