14 Search Results for "Doyen, Laurent"


Document
A Coq Formalization of Taylor Models and Power Series for Solving Ordinary Differential Equations

Authors: Sewon Park and Holger Thies

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
In exact real computation real numbers are manipulated exactly without round-off errors, making it well-suited for high precision verified computation. In recent work we propose an axiomatic formalization of exact real computation in the Coq theorem prover. The formalization admits an extended extraction mechanism that lets us extract computational content from constructive parts of proofs to efficient programs built on top of AERN, a Haskell library for exact real computation. Many processes in science and engineering are modeled by ordinary differential equations (ODEs), and often safety-critical applications depend on computing their solutions correctly. The primary goal of the current work is to extend our framework to spaces of functions and to support computation of solutions to ODEs and other essential operators. In numerical mathematics, the most common way to represent continuous functions is to use polynomial approximations. This can be modeled by so-called Taylor models, that encode a function as a polynomial and a rigorous error-bound over some domain. We define types of classical functions that do not hold any computational content and formalize Taylor models to computationally approximate those classical functions. Classical functions are defined in a way to admit classical principles in their constructions and verification. We define various basic operations on Taylor models and verify their correctness based on the classical functions that they approximate. We then shift our interest to analytic functions as a generalization of Taylor models where polynomials are replaced by infinite power series. We use the formalization to develop a theory of non-linear polynomial ODEs. From the proofs we can extract certified exact real computation programs that compute solutions of ODEs on some time interval up to any precision.

Cite as

Sewon Park and Holger Thies. A Coq Formalization of Taylor Models and Power Series for Solving Ordinary Differential Equations. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{park_et_al:LIPIcs.ITP.2024.30,
  author =	{Park, Sewon and Thies, Holger},
  title =	{{A Coq Formalization of Taylor Models and Power Series for Solving Ordinary Differential Equations}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.30},
  URN =		{urn:nbn:de:0030-drops-207581},
  doi =		{10.4230/LIPIcs.ITP.2024.30},
  annote =	{Keywords: Exact real computation, Taylor models, Analytic functions, Computable analysis, Program extraction}
}
Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Regular Games with Imperfect Information Are Not That Regular

Authors: Laurent Doyen and Thomas Soullard

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We consider two-player games with imperfect information and the synthesis of a randomized strategy for one player that ensures the objective is satisfied almost-surely (i.e., with probability 1), regardless of the strategy of the other player. Imperfect information is modeled by an indistinguishability relation describing the pairs of histories that the first player cannot distinguish, a generalization of the traditional model with partial observations. The game is regular if it admits a regular function whose kernel commutes with the indistinguishability relation. The synthesis of pure strategies that ensure all possible outcomes satisfy the objective is possible in regular games, by a generic reduction that holds for all objectives. While the solution for pure strategies extends to randomized strategies in the traditional model with partial observations (which is always regular), a similar reduction does not exist in the more general model. Despite that, we show that in regular games with Büchi objectives the synthesis problem is decidable for randomized strategies that ensure the outcome satisfies the objective almost-surely.

Cite as

Laurent Doyen and Thomas Soullard. Regular Games with Imperfect Information Are Not That Regular. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doyen_et_al:LIPIcs.CONCUR.2024.23,
  author =	{Doyen, Laurent and Soullard, Thomas},
  title =	{{Regular Games with Imperfect Information Are Not That Regular}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.23},
  URN =		{urn:nbn:de:0030-drops-207953},
  doi =		{10.4230/LIPIcs.CONCUR.2024.23},
  annote =	{Keywords: Imperfect-information games, randomized strategies, synthesis}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
Minimising the Probabilistic Bisimilarity Distance

Authors: Stefan Kiefer and Qiyi Tang

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications to the verification of probabilistic noninterference in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs, in particular, whether there exist strategies such that the probabilistic bisimilarity distance between the induced labelled Markov chains is less than a given rational number, both for memoryless strategies and general strategies. We show that the distance minimisation problem is ∃ℝ-complete for memoryless strategies and undecidable for general strategies. We also study the computational complexity of the qualitative problem about making the distance less than one. This problem is known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for general strategies.

Cite as

Stefan Kiefer and Qiyi Tang. Minimising the Probabilistic Bisimilarity Distance. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.CONCUR.2024.32,
  author =	{Kiefer, Stefan and Tang, Qiyi},
  title =	{{Minimising the Probabilistic Bisimilarity Distance}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.32},
  URN =		{urn:nbn:de:0030-drops-208049},
  doi =		{10.4230/LIPIcs.CONCUR.2024.32},
  annote =	{Keywords: Markov decision processes, Markov chains}
}
Document
A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs

Authors: Marnix Suilen, Marck van der Vegt, and Sebastian Junges

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Markov Decision Processes (MDPs) model systems with uncertain transition dynamics. Multiple-environment MDPs (MEMDPs) extend MDPs. They intuitively reflect finite sets of MDPs that share the same state and action spaces but differ in the transition dynamics. The key objective in MEMDPs is to find a single strategy that satisfies a given objective in every associated MDP. The main result of this paper is PSPACE-completeness for almost-sure Rabin objectives in MEMDPs. This result clarifies the complexity landscape for MEMDPs and contrasts with results for the more general class of partially observable MDPs (POMDPs), where almost-sure reachability is already EXP-complete, and almost-sure Rabin objectives are undecidable.

Cite as

Marnix Suilen, Marck van der Vegt, and Sebastian Junges. A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{suilen_et_al:LIPIcs.CONCUR.2024.40,
  author =	{Suilen, Marnix and van der Vegt, Marck and Junges, Sebastian},
  title =	{{A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.40},
  URN =		{urn:nbn:de:0030-drops-208120},
  doi =		{10.4230/LIPIcs.CONCUR.2024.40},
  annote =	{Keywords: Markov Decision Processes, partial observability, linear-time Objectives}
}
Document
Synthesis of Robust Optimal Real-Time Systems

Authors: Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Weighted Timed Games (WTGs for short) are widely used to describe real-time controller synthesis problems, but they rely on an unrealistic perfect measure of time elapse. In order to produce strategies tolerant to timing imprecisions, we consider a notion of robustness, expressed as a parametric semantics, first introduced for timed automata. WTGs are two-player zero-sum games played in a weighted timed automaton in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. The opponent player, in addition to controlling some of the locations, can perturb delays chosen by Min. The robust value problem asks, given some threshold, whether there exists a positive perturbation and a strategy for Min ensuring to reach the target, with an accumulated weight below the threshold, whatever the opponent does. We provide in this article the first decidability result for this robust value problem. More precisely, we show that we can compute the robust value function, in a parametric way, for the class of divergent WTGs (this class has been introduced previously to obtain decidability of the (classical) value problem in WTGs without bounding the number of clocks). To this end, we show that the robust value is the fixpoint of some operators, as is classically done for value iteration algorithms. We then combine in a very careful way two representations: piecewise affine functions introduced in [Alur et al., 2004] to analyse WTGs, and shrunk Difference Bound Matrices (shrunk DBMs for short) considered in [Sankur et al., 2011] to analyse robustness in timed automata. The crux of our result consists in showing that using this representation, the operator of value iteration can be computed for infinitesimally small perturbations. Last, we also study qualitative decision problems and close an open problem on robust reachability, showing it is EXPTIME-complete for general WTGs.

Cite as

Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Synthesis of Robust Optimal Real-Time Systems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 74:1-74:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{monmege_et_al:LIPIcs.MFCS.2024.74,
  author =	{Monmege, Benjamin and Parreaux, Julie and Reynier, Pierre-Alain},
  title =	{{Synthesis of Robust Optimal Real-Time Systems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{74:1--74:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.74},
  URN =		{urn:nbn:de:0030-drops-206304},
  doi =		{10.4230/LIPIcs.MFCS.2024.74},
  annote =	{Keywords: Weighted timed games, Algorithmic game theory, Robustness}
}
Document
Antichain with SAT and Tries

Authors: Lukáš Holík and Pavol Vargovčík

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
We introduce a SAT-enabled version of an antichain algorithm for checking language emptiness of alternating finite automata (AFA) with complex transition relations encoded as compact logical formulae. The SAT solver is used to compute predecessors of AFA configurations, and at the same time, to evaluate the subsumption of newly found configurations in the antichain of the previously found ones. The algorithm could be naively implemented by an incremental SAT solver where the growing antichain is represented by adding new clauses. To make it efficient, we 1) force the SAT solver to prioritize largest/subsumption-strongest predecessors (so that weaker configurations are not even generated), and 2) store the antichain clauses in a special variant of a trie that allows fast subsumption testing. The experimental results suggest that the resulting emptiness checker is very efficient compared to the state of the art and that our techniques improve the performance of the SAT solver.

Cite as

Lukáš Holík and Pavol Vargovčík. Antichain with SAT and Tries. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 15:1-15:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{holik_et_al:LIPIcs.SAT.2024.15,
  author =	{Hol{\'\i}k, Luk\'{a}\v{s} and Vargov\v{c}{\'\i}k, Pavol},
  title =	{{Antichain with SAT and Tries}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{15:1--15:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.15},
  URN =		{urn:nbn:de:0030-drops-205372},
  doi =		{10.4230/LIPIcs.SAT.2024.15},
  annote =	{Keywords: SAT, Trie, Antichain, Alternating automata, Subset query}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs

Authors: Mohan Dantam and Richard Mayr

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider finite-state Markov decision processes with the combined Energy-MeanPayoff objective. The controller tries to avoid running out of energy while simultaneously attaining a strictly positive mean payoff in a second dimension. We show that finite memory suffices for almost surely winning strategies for the Energy-MeanPayoff objective. This is in contrast to the closely related Energy-Parity objective, where almost surely winning strategies require infinite memory in general. We show that exponential memory is sufficient (even for deterministic strategies) and necessary (even for randomized strategies) for almost surely winning Energy-MeanPayoff. The upper bound holds even if the strictly positive mean payoff part of the objective is generalized to multidimensional strictly positive mean payoff. Finally, it is decidable in pseudo-polynomial time whether an almost surely winning strategy exists.

Cite as

Mohan Dantam and Richard Mayr. Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 133:1-133:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dantam_et_al:LIPIcs.ICALP.2024.133,
  author =	{Dantam, Mohan and Mayr, Richard},
  title =	{{Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{133:1--133:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.133},
  URN =		{urn:nbn:de:0030-drops-202762},
  doi =		{10.4230/LIPIcs.ICALP.2024.133},
  annote =	{Keywords: Markov decision processes, energy, mean payoff, parity, strategy complexity}
}
Document
Observation and Distinction. Representing Information in Infinite Games

Authors: Dietmar Berwanger and Laurent Doyen

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
We compare two approaches for modelling imperfect information in infinite games by using finite-state automata. The first, more standard approach views information as the result of an observation process driven by a sequential Mealy machine. In contrast, the second approach features indistinguishability relations described by synchronous two-tape automata. The indistinguishability-relation model turns out to be strictly more expressive than the one based on observations. We present a characterisation of the indistinguishability relations that admit a representation as a finite-state observation function. We show that the characterisation is decidable, and give a procedure to construct a corresponding Mealy machine whenever one exists.

Cite as

Dietmar Berwanger and Laurent Doyen. Observation and Distinction. Representing Information in Infinite Games. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 48:1-48:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berwanger_et_al:LIPIcs.STACS.2020.48,
  author =	{Berwanger, Dietmar and Doyen, Laurent},
  title =	{{Observation and Distinction. Representing Information in Infinite Games}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{48:1--48:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.48},
  URN =		{urn:nbn:de:0030-drops-119095},
  doi =		{10.4230/LIPIcs.STACS.2020.48},
  annote =	{Keywords: Infinite Games on Finite Graphs, Imperfect Information, Automatic Structures}
}
Document
Computation Tree Logic for Synchronization Properties

Authors: Krishnendu Chatterjee and Laurent Doyen

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We present a logic that extends CTL (Computation Tree Logic) with operators that express synchronization properties. A property is synchronized in a system if it holds in all paths of a certain length. The new logic is obtained by using the same path quantifiers and temporal operators as in CTL, but allowing a different order of the quantifiers. This small syntactic variation induces a logic that can express non-regular properties for which known extensions of MSO with equality of path length are undecidable. We show that our variant of CTL is decidable and that the model-checking problem is in Delta_3^P = P^{NP^{NP}}, and is hard for the class of problems solvable in polynomial time using a parallel access to an NP oracle. We analogously consider quantifier exchange in extensions of CTL, and we present operators defined using basic operators of CTL* that express the occurrence of infinitely many synchronization points. We show that the model-checking problem remains in Delta_3^P. The distinguishing power of CTL and of our new logic coincide if the Next operator is allowed in the logics, thus the classical bisimulation quotient can be used for state-space reduction before model checking.

Cite as

Krishnendu Chatterjee and Laurent Doyen. Computation Tree Logic for Synchronization Properties. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 98:1-98:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.ICALP.2016.98,
  author =	{Chatterjee, Krishnendu and Doyen, Laurent},
  title =	{{Computation Tree Logic for Synchronization Properties}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{98:1--98:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.98},
  URN =		{urn:nbn:de:0030-drops-62334},
  doi =		{10.4230/LIPIcs.ICALP.2016.98},
  annote =	{Keywords: Computation Tree Logic, Synchronization, model-checking, complexity}
}
Document
Synchronizing Words for Weighted and Timed Automata

Authors: Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shirmohammadi

Published in: LIPIcs, Volume 29, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)


Abstract
The problem of synchronizing automata is concerned with the existence of a word that sends all states of the automaton to one and the same state. This problem has classically been studied for complete deterministic finite automata, with the existence problem being NLOGSPACE-complete. In this paper we consider synchronizing-word problems for weighted and timed automata. We consider the synchronization problem in several variants and combinations of these, including deterministic and non-deterministic timed and weighted automata, synchronization to unique location with possibly different clock valuations or accumulated weights, as well as synchronization with a safety condition forbidding the automaton to visit states outside a safety-set during synchronization (e.g. energy constraints). For deterministic weighted automata, the synchronization problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under general safety constraints. For timed automata the synchronization problems are shown to be PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case.

Cite as

Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shirmohammadi. Synchronizing Words for Weighted and Timed Automata. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 29, pp. 121-132, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{doyen_et_al:LIPIcs.FSTTCS.2014.121,
  author =	{Doyen, Laurent and Juhl, Line and Larsen, Kim G. and Markey, Nicolas and Shirmohammadi, Mahsa},
  title =	{{Synchronizing Words for Weighted and Timed Automata}},
  booktitle =	{34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)},
  pages =	{121--132},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-77-4},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{29},
  editor =	{Raman, Venkatesh and Suresh, S. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2014.121},
  URN =		{urn:nbn:de:0030-drops-48370},
  doi =		{10.4230/LIPIcs.FSTTCS.2014.121},
  annote =	{Keywords: Synchronizing words, weighted automata, timed automata}
}
Document
Generalized Mean-payoff and Energy Games

Authors: Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin

Published in: LIPIcs, Volume 8, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)


Abstract
In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Generalized mean-payoff and energy games replace individual weights by tuples, and the limit average (resp. running sum) of each coordinate must be (resp. remain) nonnegative. These games have applications in the synthesis of resource-bounded processes with multiple resources. We prove the finite-memory determinacy of generalized energy games and show the inter-reducibility of generalized mean-payoff and energy games for finite-memory strategies. We also improve the computational complexity for solving both classes of games with finite-memory strategies: while the previously best known upper bound was EXPSPACE, and no lower bound was known, we give an optimal coNP-complete bound. For memoryless strategies, we show that the problem of deciding the existence of a winning strategy for the protagonist is NP-complete.

Cite as

Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Generalized Mean-payoff and Energy Games. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 505-516, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.FSTTCS.2010.505,
  author =	{Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A. and Raskin, Jean-Fran\c{c}ois},
  title =	{{Generalized Mean-payoff and Energy Games}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)},
  pages =	{505--516},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-23-1},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{8},
  editor =	{Lodaya, Kamal and Mahajan, Meena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2010.505},
  URN =		{urn:nbn:de:0030-drops-28484},
  doi =		{10.4230/LIPIcs.FSTTCS.2010.505},
  annote =	{Keywords: mean-payoff games, energy games, finite memory strategies, determinacy}
}
Document
On the Power of Imperfect Information

Authors: Dietmar Berwanger and Laurent Doyen

Published in: LIPIcs, Volume 2, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2008)


Abstract
We present a polynomial-time reduction from parity games with imperfect information to safety games with imperfect information. Similar reductions for games with perfect information typically increase the game size exponentially. Our construction avoids such a blow-up by using imperfect information to realise succinct counters which cover a range exponentially larger than their size. In particular, the reduction shows that the problem of solving imperfect-information games with safety conditions is \EXPTIME-complete.

Cite as

Dietmar Berwanger and Laurent Doyen. On the Power of Imperfect Information. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 2, pp. 73-82, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{berwanger_et_al:LIPIcs.FSTTCS.2008.1742,
  author =	{Berwanger, Dietmar and Doyen, Laurent},
  title =	{{On the Power of Imperfect Information}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{73--82},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-08-8},
  ISSN =	{1868-8969},
  year =	{2008},
  volume =	{2},
  editor =	{Hariharan, Ramesh and Mukund, Madhavan and Vinay, V},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2008.1742},
  URN =		{urn:nbn:de:0030-drops-17427},
  doi =		{10.4230/LIPIcs.FSTTCS.2008.1742},
  annote =	{Keywords: Infinite games, imperfect information}
}
  • Refine by Author
  • 6 Doyen, Laurent
  • 2 Berwanger, Dietmar
  • 2 Chatterjee, Krishnendu
  • 2 Henzinger, Thomas A.
  • 2 Raskin, Jean-François
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Logic and verification
  • 2 Mathematics of computing → Probability and statistics
  • 1 Computing methodologies → Planning under uncertainty
  • 1 Computing methodologies → Reasoning about belief and knowledge
  • 1 Software and its engineering → Formal methods
  • Show More...

  • Refine by Keyword
  • 2 Markov decision processes
  • 1 Algorithmic game theory
  • 1 Alternating automata
  • 1 Analytic functions
  • 1 Antichain
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 9 2024
  • 1 2008
  • 1 2010
  • 1 2014
  • 1 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail