19 Search Results for "Eisenbrand, Friedrich"


Document
Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

Authors: Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear optimization, shedding new light on classic results in the field. This includes an improvement on record running time bounds obtained from a slight extension of Lenstra’s 1983 algorithm [Math. Oper. Res. '83] to optimizing under few constraints with small coefficients. This is important for ubiquitous tasks like knapsack-, subset sum- or scheduling problems [Eisenbrand and Weismantel, SODA'18, Jansen and Rohwedder, ITCS'19]. Further, we extend our algorithm to an intermediate linear optimization problem when the matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line of recent results on this and similarly restricted cases [Jansen et al. ICALP'19, Cslovjecsek et al. SODA'21, Brand et al. AAAI'21, Klein, Reuter SODA'22, Cslovjecsek et al. SODA'24]. We also show that the generalization of two fundamental classes of structured constraints from these works (n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially by an influential paper of Hochbaum and Shanthikumar, namely that "convex separable optimization is not much harder than linear optimization" [J. ACM '90]. To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math. Prog. '03], and our work is the first to give bounds on the norm of its elements. Importantly, we use these bounds differently from how purely-integer Graver bounds are exploited in related approaches, and prove that, surprisingly, this cannot be avoided.

Cite as

Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak. Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brand_et_al:LIPIcs.ESA.2024.32,
  author =	{Brand, Cornelius and Kouteck\'{y}, Martin and Lassota, Alexandra and Ordyniak, Sebastian},
  title =	{{Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.32},
  URN =		{urn:nbn:de:0030-drops-211033},
  doi =		{10.4230/LIPIcs.ESA.2024.32},
  annote =	{Keywords: Mixed-Integer Programming, Separable Convex Optimization, Parameterized Algorithms, Parameterized Complexity}
}
Document
Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM

Authors: Tim Randolph and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the parameterized complexity of algorithmic problems whose input is an integer set A in terms of the doubling constant 𝒞 := |A+A| / |A|, a fundamental measure of additive structure. We present evidence that this new parameterization is algorithmically useful in the form of new results for two difficult, well-studied problems: Integer Programming and Subset Sum. First, we show that determining the feasibility of bounded Integer Programs is a tractable problem when parameterized in the doubling constant. Specifically, we prove that the feasibility of an integer program ℐ with n polynomially-bounded variables and m constraints can be determined in time n^{O_𝒞(1)} ⋅ poly(|ℐ|) when the column set of the constraint matrix has doubling constant 𝒞. Second, we show that the Subset Sum and Unbounded Subset Sum problems can be solved in time n^{O_C(1)} and n^{O_𝒞(log log log n)}, respectively, where the O_C notation hides functions that depend only on the doubling constant 𝒞. We also show the equivalence of achieving an FPT algorithm for Subset Sum with bounded doubling and achieving a milestone result for the parameterized complexity of Box ILP. Finally, we design near-linear time algorithms for k-SUM as well as tight lower bounds for 4-SUM and nearly tight lower bounds for k-SUM, under the k-SUM conjecture. Several of our results rely on a new proof that Freiman’s Theorem, a central result in additive combinatorics, can be made efficiently constructive. This result may be of independent interest.

Cite as

Tim Randolph and Karol Węgrzycki. Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{randolph_et_al:LIPIcs.ESA.2024.96,
  author =	{Randolph, Tim and W\k{e}grzycki, Karol},
  title =	{{Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{96:1--96:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.96},
  URN =		{urn:nbn:de:0030-drops-211672},
  doi =		{10.4230/LIPIcs.ESA.2024.96},
  annote =	{Keywords: Parameterized algorithms, parameterized complexity, additive combinatorics, Subset Sum, integer programming, doubling constant}
}
Document
Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms

Authors: Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Pseudo-Boolean proof logging has been used successfully to provide certificates of optimality from a variety of constraint- and satisifability-style solvers that combine reasoning with a backtracking or clause-learning search. Another paradigm, occurring in dynamic programming and decision diagram solving, instead reasons about partial states and possible transitions between them. We describe a framework for generating clean and efficient pseudo-Boolean proofs for these kinds of algorithm, and use it to produce certifying algorithms for knapsack, longest path, and interval scheduling. Because we use a common proof system, we can also reason about hybrid solving algorithms: we demonstrate this by providing proof logging for a dynamic programming based knapsack propagator inside a constraint programming solver.

Cite as

Emir Demirović, Ciaran McCreesh, Matthew J. McIlree, Jakob Nordström, Andy Oertel, and Konstantin Sidorov. Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{demirovic_et_al:LIPIcs.CP.2024.9,
  author =	{Demirovi\'{c}, Emir and McCreesh, Ciaran and McIlree, Matthew J. and Nordstr\"{o}m, Jakob and Oertel, Andy and Sidorov, Konstantin},
  title =	{{Pseudo-Boolean Reasoning About States and Transitions to Certify Dynamic Programming and Decision Diagram Algorithms}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.9},
  URN =		{urn:nbn:de:0030-drops-206948},
  doi =		{10.4230/LIPIcs.CP.2024.9},
  annote =	{Keywords: Proof logging, dynamic programming, decision diagrams}
}
Document
A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

Authors: Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirović

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However, to this date, no constraint programming solver can practically produce proofs without significantly impacting performance, which hinders mainstream adoption. We address this issue by introducing a novel proof generation framework, together with a CP proof format and proof checker. Our approach is to divide the proof generation into three steps. At runtime, we require the CP solver to only produce a proof sketch, which we call a scaffold. After the solving is done, our proof processor trims and expands the scaffold into a full CP proof, which is subsequently verified. Our framework is agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate that with our framework, the overhead of logging during solving is often less than 10%, significantly lower than other approaches, and that our proof processing step can reduce the overall size of the proof by orders of magnitude and by extension the proof checking time. Our results demonstrate that proof logging has the potential to become an integral part of the CP community.

Cite as

Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirović. A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{flippo_et_al:LIPIcs.CP.2024.11,
  author =	{Flippo, Maarten and Sidorov, Konstantin and Marijnissen, Imko and Smits, Jeff and Demirovi\'{c}, Emir},
  title =	{{A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.11},
  URN =		{urn:nbn:de:0030-drops-206969},
  doi =		{10.4230/LIPIcs.CP.2024.11},
  annote =	{Keywords: proof logging, formal verification, constraint programming}
}
Document
Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra

Authors: Václav Blažej, Dušan Knop, Jan Pokorný, and Šimon Schierreich

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Equitable Connected Partition (ECP for short) problem, we are given a graph G = (V,E) together with an integer p ∈ ℕ, and our goal is to find a partition of V into p parts such that each part induces a connected sub-graph of G and the size of each two parts differs by at most 1. On the one hand, the problem is known to be NP-hard in general and W[1]-hard with respect to the path-width, the feedback-vertex set, and the number of parts p combined. On the other hand, fixed-parameter algorithms are known for parameters the vertex-integrity and the max leaf number. In this work, we systematically study ECP with respect to various structural restrictions of the underlying graph and provide a clear dichotomy of its parameterised complexity. Specifically, we show that the problem is in FPT when parameterized by the modular-width and the distance to clique. Next, we prove W[1]-hardness with respect to the distance to cluster, the 4-path vertex cover number, the distance to disjoint paths, and the feedback-edge set, and NP-hardness for constant shrub-depth graphs. Our hardness results are complemented by matching algorithmic upper-bounds: we give an XP algorithm for parameterisation by the tree-width and the distance to cluster. We also give an improved FPT algorithm for parameterisation by the vertex integrity and the first explicit FPT algorithm for the 3-path vertex cover number. The main ingredient of these algorithms is a formulation of ECP as N-fold IP, which clearly indicates that such formulations may, in certain scenarios, significantly outperform existing algorithms based on the famous algorithm of Lenstra.

Cite as

Václav Blažej, Dušan Knop, Jan Pokorný, and Šimon Schierreich. Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blazej_et_al:LIPIcs.MFCS.2024.29,
  author =	{Bla\v{z}ej, V\'{a}clav and Knop, Du\v{s}an and Pokorn\'{y}, Jan and Schierreich, \v{S}imon},
  title =	{{Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.29},
  URN =		{urn:nbn:de:0030-drops-205857},
  doi =		{10.4230/LIPIcs.MFCS.2024.29},
  annote =	{Keywords: Equitable Connected Partition, structural parameters, fixed-parameter tractability, N-fold integer programming, tree-width, shrub-depth, modular-width}
}
Document
Response Time Analysis for Fixed-Priority Preemptive Uniform Multiprocessor Systems

Authors: Binqi Sun, Tomasz Kloda, and Marco Caccamo

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
We present a response time analysis for global fixed-priority preemptive scheduling of constrained-deadline tasks upon a uniform multiprocessor where each processor can be characterized by a different speed. A fixed-priority scheduler assigns the jobs with the highest priorities to the fastest processors. Since determining whether all tasks can meet their deadlines is generally intractable even with identical processors, we propose two sufficient schedulability tests that calculate upper bounds on the task’s worst-case response time within polynomial and pseudo-polynomial time. The proposed tests leverage the linear programming model to upper bound the interference of the higher-priority tasks. Furthermore, we identify specific conditions and platforms upon which the problem can be solved more efficiently within linear time. These formulations are used to iteratively evaluate and refine possible solutions until a safe upper bound on the task’s worst-case response time is found. Additionally, we demonstrate that, with specific minor modifications, the proposed tests are compatible with Audsley’s optimal priority assignment. Experimental evaluations performed on synthetic task sets show that the proposed approach outperforms the state-of-the-art methods.

Cite as

Binqi Sun, Tomasz Kloda, and Marco Caccamo. Response Time Analysis for Fixed-Priority Preemptive Uniform Multiprocessor Systems. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 17:1-17:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECRTS.2024.17,
  author =	{Sun, Binqi and Kloda, Tomasz and Caccamo, Marco},
  title =	{{Response Time Analysis for Fixed-Priority Preemptive Uniform Multiprocessor Systems}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{17:1--17:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.17},
  URN =		{urn:nbn:de:0030-drops-203201},
  doi =		{10.4230/LIPIcs.ECRTS.2024.17},
  annote =	{Keywords: Real-time scheduling, Uniform multiprocessor, Response time analysis}
}
Document
Track A: Algorithms, Complexity and Games
Simultaneously Approximating All 𝓁_p-Norms in Correlation Clustering

Authors: Sami Davies, Benjamin Moseley, and Heather Newman

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for all 𝓁_p-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. In addition, our algorithm is the first combinatorial approximation algorithm for the 𝓁₂-norm objective, and more generally the first combinatorial algorithm for the 𝓁_p-norm objective when 1 < p < ∞. It is also faster than all previous algorithms that minimize the 𝓁_p-norm of the disagreement vector, with run-time O(n^ω), where O(n^ω) is the time for matrix multiplication on n × n matrices. When the maximum positive degree in the graph is at most Δ, this can be improved to a run-time of O(nΔ² log n).

Cite as

Sami Davies, Benjamin Moseley, and Heather Newman. Simultaneously Approximating All 𝓁_p-Norms in Correlation Clustering. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 52:1-52:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.ICALP.2024.52,
  author =	{Davies, Sami and Moseley, Benjamin and Newman, Heather},
  title =	{{Simultaneously Approximating All 𝓁\underlinep-Norms in Correlation Clustering}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{52:1--52:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.52},
  URN =		{urn:nbn:de:0030-drops-201950},
  doi =		{10.4230/LIPIcs.ICALP.2024.52},
  annote =	{Keywords: Approximation algorithms, correlation clustering, all-norms, lp-norms}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Track A: Algorithms, Complexity and Games
Detecting Disjoint Shortest Paths in Linear Time and More

Authors: Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants. Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs). We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs. Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋. Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6.

Cite as

Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein. Detecting Disjoint Shortest Paths in Linear Time and More. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{akmal_et_al:LIPIcs.ICALP.2024.9,
  author =	{Akmal, Shyan and Vassilevska Williams, Virginia and Wein, Nicole},
  title =	{{Detecting Disjoint Shortest Paths in Linear Time and More}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.9},
  URN =		{urn:nbn:de:0030-drops-201529},
  doi =		{10.4230/LIPIcs.ICALP.2024.9},
  annote =	{Keywords: disjoint shortest paths, algebraic graph algorithms, disjoint paths, fine-grained complexity, clique}
}
Document
An Improved Bound on Sums of Square Roots via the Subspace Theorem

Authors: Friedrich Eisenbrand, Matthieu Haeberle, and Neta Singer

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The sum of square roots is as follows: Given x_1,… ,x_n ∈ ℤ and a₁,… ,a_n ∈ ℕ decide whether E = ∑_{i=1}^n x_i √{a_i} ≥ 0. It is a prominent open problem (Problem 33 of the Open Problems Project), whether this can be decided in polynomial time. The state-of-the-art methods rely on separation bounds, which are lower bounds on the minimum nonzero absolute value of E. The current best bound shows that |E| ≥ (n ⋅ max_i (|x_i| ⋅√{a_i})) ^{-2ⁿ}, which is doubly exponentially small. We provide a new bound of the form |E| ≥ γ ⋅ (n ⋅ max_i |x_i|)^{-2n} where γ is a constant depending on a₁,… ,a_n. This is singly exponential in n for fixed a_1,… ,a_n. The constant γ is not explicit and stems from the subspace theorem, a deep result in the geometry of numbers.

Cite as

Friedrich Eisenbrand, Matthieu Haeberle, and Neta Singer. An Improved Bound on Sums of Square Roots via the Subspace Theorem. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 54:1-54:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eisenbrand_et_al:LIPIcs.SoCG.2024.54,
  author =	{Eisenbrand, Friedrich and Haeberle, Matthieu and Singer, Neta},
  title =	{{An Improved Bound on Sums of Square Roots via the Subspace Theorem}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{54:1--54:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.54},
  URN =		{urn:nbn:de:0030-drops-199993},
  doi =		{10.4230/LIPIcs.SoCG.2024.54},
  annote =	{Keywords: Exact computing, Separation Bounds, Computational Geometry, Geometry of Numbers}
}
Document
Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity

Authors: Jana Cslovjecsek, Friedrich Eisenbrand, Michał Pilipczuk, Moritz Venzin, and Robert Weismantel

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We consider the problem of solving integer programs of the form min {c^⊺ x : Ax = b, x ∈ ℤ_{⩾ 0}}, where A is a multistage stochastic matrix in the following sense: the primal treedepth of A is bounded by a parameter d, which means that the columns of A can be organized into a rooted forest of depth at most d so that columns not bound by the ancestor/descendant relation do not have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-parameter time f(d,‖A‖_{∞})⋅ nlog^{𝒪(2^d)} n, where f is a computable function and n is the number of rows of A. The algorithm works in the strong model, where the running time only measures unit arithmetic operations on the input numbers and does not depend on their bitlength. This is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear running time in the strong sense. For two-stage stochastic integer programs, our algorithm works in time 2^{((r+s)‖A‖_∞)^{𝒪(r(r+s))}}⋅ nlog^{𝒪(rs)} n, which improves over previous methods both in terms of the polynomial factor and in terms of the dependence on r and s. In fact, for r = 1 the dependence on s is asymptotically almost tight assuming the Exponential Time Hypothesis. Our algorithm can be also parallelized: we give an implementation in the PRAM model that achieves running time f(d,‖A‖_{∞})⋅ log^{𝒪(2^d)} n using n processors. The main conceptual ingredient in our algorithms is a new proximity result for multistage stochastic integer programs. We prove that if we consider an integer program P, say with a constraint matrix A, then for every optimum solution to the linear relaxation of P there exists an optimum (integral) solution to P that lies, in the 𝓁_{∞}-norm, within distance bounded by a function of ‖A‖_{∞} and the primal treedepth of A. On the way to achieve this result, we prove a generalization and considerable improvement of a structural result of Klein for multistage stochastic integer programs. Once the proximity results are established, this allows us to apply a treedepth-based branching strategy guided by an optimum solution to the linear relaxation.

Cite as

Jana Cslovjecsek, Friedrich Eisenbrand, Michał Pilipczuk, Moritz Venzin, and Robert Weismantel. Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cslovjecsek_et_al:LIPIcs.ESA.2021.33,
  author =	{Cslovjecsek, Jana and Eisenbrand, Friedrich and Pilipczuk, Micha{\l} and Venzin, Moritz and Weismantel, Robert},
  title =	{{Efficient Sequential and Parallel Algorithms for Multistage Stochastic Integer Programming Using Proximity}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.33},
  URN =		{urn:nbn:de:0030-drops-146146},
  doi =		{10.4230/LIPIcs.ESA.2021.33},
  annote =	{Keywords: parameterized algorithm, multistage stochastic programming, proximity}
}
Document
Approximate CVP_p in Time 2^{0.802 n}

Authors: Friedrich Eisenbrand and Moritz Venzin

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We show that a constant factor approximation of the shortest and closest lattice vector problem w.r.t. any 𝓁_p-norm can be computed in time 2^{(0.802 +ε) n}. This matches the currently fastest constant factor approximation algorithm for the shortest vector problem w.r.t. 𝓁₂. To obtain our result, we combine the latter algorithm w.r.t. 𝓁₂ with geometric insights related to coverings.

Cite as

Friedrich Eisenbrand and Moritz Venzin. Approximate CVP_p in Time 2^{0.802 n}. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 43:1-43:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{eisenbrand_et_al:LIPIcs.ESA.2020.43,
  author =	{Eisenbrand, Friedrich and Venzin, Moritz},
  title =	{{Approximate CVP\underlinep in Time 2^\{0.802 n\}}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{43:1--43:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.43},
  URN =		{urn:nbn:de:0030-drops-129097},
  doi =		{10.4230/LIPIcs.ESA.2020.43},
  annote =	{Keywords: Shortest and closest vector problem, approximation algorithm, sieving, covering convex bodies}
}
Document
Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints

Authors: Dušan Knop, Michał Pilipczuk, and Marcin Wrochna

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We consider the standard ILP Feasibility problem: given an integer linear program of the form {Ax = b, x >= 0}, where A is an integer matrix with k rows and l columns, x is a vector of l variables, and b is a vector of k integers, we ask whether there exists x in N^l that satisfies Ax = b. Each row of A specifies one linear constraint on x; our goal is to study the complexity of ILP Feasibility when both k, the number of constraints, and |A|_infty, the largest absolute value of an entry in A, are small. Papadimitriou [Christos H. Papadimitriou, 1981] was the first to give a fixed-parameter algorithm for ILP Feasibility under parameterization by the number of constraints that runs in time ((|A |_infty + |b|_infty) * k)^O(k^2). This was very recently improved by Eisenbrand and Weismantel [Friedrich Eisenbrand and Robert Weismantel, 2018], who used the Steinitz lemma to design an algorithm with running time (k |A|_infty)^{O(k)}* |b|_infty^2, which was subsequently improved by Jansen and Rohwedder [Klaus Jansen and Lars Rohwedder, 2019] to O(k |A |_infty)^k* log |b|_infty. We prove that for {0,1}-matrices A, the running time of the algorithm of Eisenbrand and Weismantel is probably optimal: an algorithm with running time 2^{o(k log k)}* (l+|{b}|_infty)^{o(k)} would contradict the Exponential Time Hypothesis (ETH). This improves previous non-tight lower bounds of Fomin et al. [Fedor V. Fomin et al., 2018]. We then consider integer linear programs that may have many constraints, but they need to be structured in a "shallow" way. Precisely, we consider the parameter {dual treedepth} of the matrix A, denoted td_D(A), which is the treedepth of the graph over the rows of A, where two rows are adjacent if in some column they simultaneously contain a non-zero entry. It was recently shown by Koutecký et al. [Martin Koutecký et al., 2018] that {ILP Feasibility} can be solved in time |A |_infty^{2^O(td_D(A))} * (k+l+log |b|_infty)^O(1). We present a streamlined proof of this fact and prove that, again, this running time is probably optimal: even assuming that all entries of A and {b} are in {-1,0,1}, the existence of an algorithm with running time 2^{2^o(td_D(A))} * (k+l)^O(1) would contradict the ETH.

Cite as

Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{knop_et_al:LIPIcs.STACS.2019.44,
  author =	{Knop, Du\v{s}an and Pilipczuk, Micha{\l} and Wrochna, Marcin},
  title =	{{Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.44},
  URN =		{urn:nbn:de:0030-drops-102831},
  doi =		{10.4230/LIPIcs.STACS.2019.44},
  annote =	{Keywords: integer linear programming, fixed-parameter tractability, ETH}
}
Document
Diversity Maximization in Doubling Metrics

Authors: Alfonso Cevallos, Friedrich Eisenbrand, and Sarah Morell

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Diversity maximization is an important geometric optimization problem with many applications in recommender systems, machine learning or search engines among others. A typical diversification problem is as follows: Given a finite metric space (X,d) and a parameter k in N, find a subset of k elements of X that has maximum diversity. There are many functions that measure diversity. One of the most popular measures, called remote-clique, is the sum of the pairwise distances of the chosen elements. In this paper, we present novel results on three widely used diversity measures: Remote-clique, remote-star and remote-bipartition. Our main result are polynomial time approximation schemes for these three diversification problems under the assumption that the metric space is doubling. This setting has been discussed in the recent literature. The existence of such a PTAS however was left open. Our results also hold in the setting where the distances are raised to a fixed power q >= 1, giving rise to more variants of diversity functions, similar in spirit to the variations of clustering problems depending on the power applied to the pairwise distances. Finally, we provide a proof of NP-hardness for remote-clique with squared distances in doubling metric spaces.

Cite as

Alfonso Cevallos, Friedrich Eisenbrand, and Sarah Morell. Diversity Maximization in Doubling Metrics. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 33:1-33:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{cevallos_et_al:LIPIcs.ISAAC.2018.33,
  author =	{Cevallos, Alfonso and Eisenbrand, Friedrich and Morell, Sarah},
  title =	{{Diversity Maximization in Doubling Metrics}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{33:1--33:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.33},
  URN =		{urn:nbn:de:0030-drops-99818},
  doi =		{10.4230/LIPIcs.ISAAC.2018.33},
  annote =	{Keywords: Remote-clique, remote-star, remote-bipartition, doubling dimension, grid rounding, epsilon-nets, polynomial time approximation scheme, facility location, information retrieval}
}
Document
Faster Algorithms for Integer Programs with Block Structure

Authors: Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We consider integer programming problems max {c^Tx : A x = b, l <= x <= u, x in Z^{nt}} where A has a (recursive) block-structure generalizing n-fold integer programs which recently received considerable attention in the literature. An n-fold IP is an integer program where A consists of n repetitions of submatrices A in Z^{r × t} on the top horizontal part and n repetitions of a matrix B in Z^{s × t} on the diagonal below the top part. Instead of allowing only two types of block matrices, one for the horizontal line and one for the diagonal, we generalize the n-fold setting to allow for arbitrary matrices in every block. We show that such an integer program can be solved in time n^2t^2 phi x (r s delta)^{O(rs^2+ sr^2)} (ignoring logarithmic factors). Here delta is an upper bound on the largest absolute value of an entry of A and phi is the largest binary encoding length of a coefficient of c. This improves upon the previously best algorithm of Hemmecke, Onn and Romanchuk that runs in time n^3t^3 phi x delta^{O(st(r+t))}. In particular, our algorithm is not exponential in the number t of columns of A and B. Our algorithm is based on a new upper bound on the l_1-norm of an element of the Graver basis of an integer matrix and on a proximity bound between the LP and IP optimal solutions tailored for IPs with block structure. These new bounds rely on the Steinitz Lemma. Furthermore, we extend our techniques to the recently introduced tree-fold IPs, where we again present a more efficient algorithm in a generalized setting.

Cite as

Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster Algorithms for Integer Programs with Block Structure. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 49:1-49:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{eisenbrand_et_al:LIPIcs.ICALP.2018.49,
  author =	{Eisenbrand, Friedrich and Hunkenschr\"{o}der, Christoph and Klein, Kim-Manuel},
  title =	{{Faster Algorithms for Integer Programs with Block Structure}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{49:1--49:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.49},
  URN =		{urn:nbn:de:0030-drops-90537},
  doi =		{10.4230/LIPIcs.ICALP.2018.49},
  annote =	{Keywords: n-fold, Tree-fold, Integer Programming}
}
  • Refine by Author
  • 9 Eisenbrand, Friedrich
  • 2 Cevallos, Alfonso
  • 2 Demirović, Emir
  • 2 Hähnle, Nicolai
  • 2 Knop, Dušan
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Discrete optimization
  • 2 Theory of computation → Fixed parameter tractability
  • 2 Theory of computation → Integer programming
  • 2 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 2 fixed-parameter tractability
  • 1 Approximation Algorithms
  • 1 Approximation algorithm
  • 1 Approximation algorithms
  • 1 Approximation hardness
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 10 2024
  • 3 2010
  • 2 2018
  • 1 2016
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail