70 Search Results for "Eppstein, David"


Volume

LIPIcs, Volume 101

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)

SWAT 2018, June 18-20, 2018, Malmö, Sweden

Editors: David Eppstein

Document
Noncrossing Longest Paths and Cycles

Authors: Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, and Pavel Valtr

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.

Cite as

Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, and Pavel Valtr. Noncrossing Longest Paths and Cycles. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aloupis_et_al:LIPIcs.GD.2024.36,
  author =	{Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Eppstein, David and Maheshwari, Anil and Odak, Saeed and Smid, Michiel and T\'{o}th, Csaba D. and Valtr, Pavel},
  title =	{{Noncrossing Longest Paths and Cycles}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.36},
  URN =		{urn:nbn:de:0030-drops-213203},
  doi =		{10.4230/LIPIcs.GD.2024.36},
  annote =	{Keywords: Longest Paths, Longest Cycles, Noncrossing Paths, Noncrossing Cycles}
}
Document
Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature

Authors: David Eppstein, Michael T. Goodrich, and Abraham M. Illickan

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature.

Cite as

David Eppstein, Michael T. Goodrich, and Abraham M. Illickan. Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.GD.2024.39,
  author =	{Eppstein, David and Goodrich, Michael T. and Illickan, Abraham M.},
  title =	{{Drawing Planar Graphs and 1-Planar Graphs Using Cubic B\'{e}zier Curves with Bounded Curvature}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.39},
  URN =		{urn:nbn:de:0030-drops-213237},
  doi =		{10.4230/LIPIcs.GD.2024.39},
  annote =	{Keywords: graph drawing, planar graphs, B\'{e}zier curves, and RAC drawings}
}
Document
Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs

Authors: David Eppstein and Daniel Frishberg

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We give a new rapid mixing result for a natural random walk on the independent sets of a graph G. We show that when G has bounded treewidth, this random walk - known as the Glauber dynamics for the hardcore model - mixes rapidly for all fixed values of the standard parameter λ > 0, giving a simple alternative to existing sampling algorithms for these structures. We also show rapid mixing for analogous Markov chains on dominating sets, b-edge covers, b-matchings, maximal independent sets, and maximal b-matchings. (For b-matchings, maximal independent sets, and maximal b-matchings we also require bounded degree.) Our results imply simpler alternatives to known algorithms for the sampling and approximate counting problems in these graphs. We prove our results by applying a divide-and-conquer framework we developed in a previous paper, as an alternative to the projection-restriction technique introduced by Jerrum, Son, Tetali, and Vigoda. We extend this prior framework to handle chains for which the application of that framework is not straightforward, strengthening existing results by Dyer, Goldberg, and Jerrum and by Heinrich for the Glauber dynamics on q-colorings of graphs of bounded treewidth and bounded degree.

Cite as

David Eppstein and Daniel Frishberg. Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 30:1-30:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.ISAAC.2023.30,
  author =	{Eppstein, David and Frishberg, Daniel},
  title =	{{Rapid Mixing for the Hardcore Glauber Dynamics and Other Markov Chains in Bounded-Treewidth Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{30:1--30:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.30},
  URN =		{urn:nbn:de:0030-drops-193324},
  doi =		{10.4230/LIPIcs.ISAAC.2023.30},
  annote =	{Keywords: Glauber dynamics, mixing time, projection-restriction, multicommodity flow}
}
Document
Dynamic Planar Embedding Is in DynFO

Authors: Samir Datta, Asif Khan, and Anish Mukherjee

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Planar Embedding is a drawing of a graph on the plane such that the edges do not intersect each other except at the vertices. We know that testing the planarity of a graph and computing its embedding (if it exists), can efficiently be computed, both sequentially [John E. Hopcroft and Robert Endre Tarjan, 1974] and in parallel [Vijaya Ramachandran and John H. Reif, 1994], when the entire graph is presented as input. In the dynamic setting, the input graph changes one edge at a time through insertion and deletions and planarity testing/embedding has to be updated after every change. By storing auxilliary information we can improve the complexity of dynamic planarity testing/embedding over the obvious recomputation from scratch. In the sequential dynamic setting, there has been a series of works [David Eppstein et al., 1996; Giuseppe F. Italiano et al., 1993; Jacob Holm et al., 2018; Jacob Holm and Eva Rotenberg, 2020], culminating in the breakthrough result of polylog(n) sequential time (amortized) planarity testing algorithm of Holm and Rotenberg [Jacob Holm and Eva Rotenberg, 2020]. In this paper we study planar embedding through the lens of DynFO, a parallel dynamic complexity class introduced by Patnaik et al [Sushant Patnaik and Neil Immerman, 1997] (also [Guozhu Dong et al., 1995]). We show that it is possible to dynamically maintain whether an edge can be inserted to a planar graph without causing non-planarity in DynFO. We extend this to show how to maintain an embedding of a planar graph under both edge insertions and deletions, while rejecting edge insertions that violate planarity. Our main idea is to maintain embeddings of only the triconnected components and a special two-colouring of separating pairs that enables us to side-step cascading flips when embedding of a biconnected planar graph changes, a major issue for sequential dynamic algorithms [Jacob Holm and Eva Rotenberg, 2020; Jacob Holm and Eva Rotenberg, 2020].

Cite as

Samir Datta, Asif Khan, and Anish Mukherjee. Dynamic Planar Embedding Is in DynFO. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.MFCS.2023.39,
  author =	{Datta, Samir and Khan, Asif and Mukherjee, Anish},
  title =	{{Dynamic Planar Embedding Is in DynFO}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{39:1--39:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.39},
  URN =		{urn:nbn:de:0030-drops-185736},
  doi =		{10.4230/LIPIcs.MFCS.2023.39},
  annote =	{Keywords: Dynamic Complexity, Planar graphs, Planar embedding}
}
Document
Dynamic Constant Time Parallel Graph Algorithms with Sub-Linear Work

Authors: Jonas Schmidt and Thomas Schwentick

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
The paper proposes dynamic parallel algorithms for connectivity and bipartiteness of undirected graphs that require constant time and 𝒪(n^{1/2+ε}) work on the CRCW PRAM model. The work of these algorithms almost matches the work of the 𝒪(log n) time algorithm for connectivity by Kopelowitz et al. (2018) on the EREW PRAM model and the time of the sequential algorithm for bipartiteness by Eppstein et al. (1997). In particular, we show that the sparsification technique, which has been used in both mentioned papers, can in principle also be used for constant time algorithms in the CRCW PRAM model, despite the logarithmic depth of sparsification trees.

Cite as

Jonas Schmidt and Thomas Schwentick. Dynamic Constant Time Parallel Graph Algorithms with Sub-Linear Work. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 80:1-80:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{schmidt_et_al:LIPIcs.MFCS.2023.80,
  author =	{Schmidt, Jonas and Schwentick, Thomas},
  title =	{{Dynamic Constant Time Parallel Graph Algorithms with Sub-Linear Work}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{80:1--80:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.80},
  URN =		{urn:nbn:de:0030-drops-186140},
  doi =		{10.4230/LIPIcs.MFCS.2023.80},
  annote =	{Keywords: Dynamic parallel algorithms, Undirected connectivity, Bipartiteness}
}
Document
Track A: Algorithms, Complexity and Games
Improved Mixing for the Convex Polygon Triangulation Flip Walk

Authors: David Eppstein and Daniel Frishberg

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We prove that the well-studied triangulation flip walk on a convex point set mixes in time O(n³ log³ n), the first progress since McShine and Tetali’s O(n⁵ log n) bound in 1997. In the process we give lower and upper bounds of respectively Ω(1/(√n log n)) and O(1/√n) - asymptotically tight up to an O(log n) factor - for the expansion of the associahedron graph K_n. The upper bound recovers Molloy, Reed, and Steiger’s Ω(n^(3/2)) bound on the mixing time of the walk. To obtain these results, we introduce a framework consisting of a set of sufficient conditions under which a given Markov chain mixes rapidly. This framework is a purely combinatorial analogue that in some circumstances gives better results than the projection-restriction technique of Jerrum, Son, Tetali, and Vigoda. In particular, in addition to the result for triangulations, we show quasipolynomial mixing for the k-angulation flip walk on a convex point set, for fixed k ≥ 4.

Cite as

David Eppstein and Daniel Frishberg. Improved Mixing for the Convex Polygon Triangulation Flip Walk. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 56:1-56:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.ICALP.2023.56,
  author =	{Eppstein, David and Frishberg, Daniel},
  title =	{{Improved Mixing for the Convex Polygon Triangulation Flip Walk}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{56:1--56:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.56},
  URN =		{urn:nbn:de:0030-drops-181081},
  doi =		{10.4230/LIPIcs.ICALP.2023.56},
  annote =	{Keywords: associahedron, mixing time, mcmc, Markov chains, triangulations, quadrangulations, k-angulations, multicommodity flow, projection-restriction}
}
Document
Non-Crossing Hamiltonian Paths and Cycles in Output-Polynomial Time

Authors: David Eppstein

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can list the non-crossing Hamiltonian paths or the polygonalizations, in time polynomial in the output size, by filtering the output of simple backtracking algorithms for non-crossing paths or surrounding cycles respectively. To prove these results we relate the numbers of non-crossing structures to two easily-computed parameters of the point set: the minimum number of points whose removal results in a collinear set, and the number of points interior to the convex hull. These relations also lead to polynomial-time approximation algorithms for the numbers of structures of all four types, accurate to within a constant factor of the logarithm of these numbers.

Cite as

David Eppstein. Non-Crossing Hamiltonian Paths and Cycles in Output-Polynomial Time. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eppstein:LIPIcs.SoCG.2023.29,
  author =	{Eppstein, David},
  title =	{{Non-Crossing Hamiltonian Paths and Cycles in Output-Polynomial Time}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.29},
  URN =		{urn:nbn:de:0030-drops-178790},
  doi =		{10.4230/LIPIcs.SoCG.2023.29},
  annote =	{Keywords: polygonalization, non-crossing structures, output-sensitive algorithms}
}
Document
Distributed Construction of Lightweight Spanners for Unit Ball Graphs

Authors: David Eppstein and Hadi Khodabandeh

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Resolving an open question from 2006 [Damian et al., 2006], we prove the existence of light-weight bounded-degree spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple 𝒪(log^*n)-round distributed algorithm in the LOCAL model of computation, that given a unit ball graph G with n vertices and a positive constant ε < 1 finds a (1+ε)-spanner with constant bounds on its maximum degree and its lightness using only 2-hop neighborhood information. This immediately improves the best prior lightness bound, the algorithm of Damian, Pandit, and Pemmaraju [Damian et al., 2006], which runs in 𝒪(log^*n) rounds in the LOCAL model, but has a 𝒪(log Δ) bound on its lightness, where Δ is the ratio of the length of the longest edge to the length of the shortest edge in the unit ball graph. Next, we adjust our algorithm to work in the CONGEST model, without changing its round complexity, hence proposing the first spanner construction for unit ball graphs in the CONGEST model of computation. We further study the problem in the two dimensional Euclidean plane and we provide a construction with similar properties that has a constant average number of edge intersections per node. Lastly, we provide experimental results that confirm our theoretical bounds, and show an efficient performance from our distributed algorithm compared to the best known centralized construction.

Cite as

David Eppstein and Hadi Khodabandeh. Distributed Construction of Lightweight Spanners for Unit Ball Graphs. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.DISC.2022.21,
  author =	{Eppstein, David and Khodabandeh, Hadi},
  title =	{{Distributed Construction of Lightweight Spanners for Unit Ball Graphs}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.21},
  URN =		{urn:nbn:de:0030-drops-172129},
  doi =		{10.4230/LIPIcs.DISC.2022.21},
  annote =	{Keywords: spanners, doubling metrics, distributed, topology control}
}
Document
Improved Search of Relevant Points for Nearest-Neighbor Classification

Authors: Alejandro Flores-Velazco

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Given a training set P ⊂ ℝ^d, the nearest-neighbor classifier assigns any query point q ∈ ℝ^d to the class of its closest point in P. To answer these classification queries, some training points are more relevant than others. We say a training point is relevant if its omission from the training set could induce the misclassification of some query point in ℝ^d. These relevant points are commonly known as border points, as they define the boundaries of the Voronoi diagram of P that separate points of different classes. Being able to compute this set of points efficiently is crucial to reduce the size of the training set without affecting the accuracy of the nearest-neighbor classifier. Improving over a decades-long result by Clarkson (FOCS'94), Eppstein (SOSA’22) recently proposed an output-sensitive algorithm to find the set of border points of P in 𝒪(n² + nk²) time, where k is the size of such set. In this paper, we improve this algorithm to have time complexity equal to 𝒪(nk²) by proving that the first phase of their algorithm, which requires 𝒪(n²) time, are unnecessary.

Cite as

Alejandro Flores-Velazco. Improved Search of Relevant Points for Nearest-Neighbor Classification. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 54:1-54:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{floresvelazco:LIPIcs.ESA.2022.54,
  author =	{Flores-Velazco, Alejandro},
  title =	{{Improved Search of Relevant Points for Nearest-Neighbor Classification}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{54:1--54:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.54},
  URN =		{urn:nbn:de:0030-drops-169922},
  doi =		{10.4230/LIPIcs.ESA.2022.54},
  annote =	{Keywords: nearest-neighbor classification, nearest-neighbor rule, decision boundaries, border points, relevant points}
}
Document
Fully Dynamic Four-Vertex Subgraph Counting

Authors: Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua

Published in: LIPIcs, Volume 221, 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)


Abstract
This paper presents a comprehensive study of algorithms for maintaining the number of all connected four-vertex subgraphs in a dynamic graph. Specifically, our algorithms maintain the number of paths of length three in deterministic amortized O(m^{1/2}) update time, and any other connected four-vertex subgraph which is not a clique in deterministic amortized update time O(m^{2/3}). Queries can be answered in constant time. We also study the query times for subgraphs containing an arbitrary edge that is supplied only with the query as well as the case where only subgraphs containing a vertex s that is fixed beforehand are considered. For length-3 paths, paws, 4-cycles, and diamonds our bounds match or are not far from (conditional) lower bounds: Based on the OMv conjecture we show that any dynamic algorithm that detects the existence of paws, diamonds, or 4-cycles or that counts length-3 paths takes update time Ω(m^{1/2-δ}). Additionally, for 4-cliques and all connected induced subgraphs, we show a lower bound of Ω(m^{1-δ}) for any small constant δ > 0 for the amortized update time, assuming the static combinatorial 4-clique conjecture holds. This shows that the O(m) algorithm by Eppstein et al. [David Eppstein et al., 2012] for these subgraphs cannot be improved by a polynomial factor.

Cite as

Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. Fully Dynamic Four-Vertex Subgraph Counting. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 221, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{hanauer_et_al:LIPIcs.SAND.2022.18,
  author =	{Hanauer, Kathrin and Henzinger, Monika and Hua, Qi Cheng},
  title =	{{Fully Dynamic Four-Vertex Subgraph Counting}},
  booktitle =	{1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-224-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{221},
  editor =	{Aspnes, James and Michail, Othon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2022.18},
  URN =		{urn:nbn:de:0030-drops-159608},
  doi =		{10.4230/LIPIcs.SAND.2022.18},
  annote =	{Keywords: Dynamic Graph Algorithms, Subgraph Counting, Motif Search}
}
Document
Reachability and Matching in Single Crossing Minor Free Graphs

Authors: Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We show that for each single crossing graph H, a polynomially bounded weight function for all H-minor free graphs G can be constructed in logspace such that it gives nonzero weights to all the cycles in G. This class of graphs subsumes almost all classes of graphs for which such a weight function is known to be constructed in logspace. As a consequence, we obtain that for the class of H-minor free graphs where H is a single crossing graph, reachability can be solved in UL, and bipartite maximum matching can be solved in SPL, which are small subclasses of the parallel complexity class NC. In the restrictive case of bipartite graphs, our maximum matching result improves upon the recent result of Eppstein and Vazirani [David Eppstein and Vijay V. Vazirani, 2021], where they show an NC bound for constructing perfect matching in general single crossing minor free graphs.

Cite as

Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari. Reachability and Matching in Single Crossing Minor Free Graphs. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.FSTTCS.2021.16,
  author =	{Datta, Samir and Gupta, Chetan and Jain, Rahul and Mukherjee, Anish and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Reachability and Matching in Single Crossing Minor Free Graphs}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.16},
  URN =		{urn:nbn:de:0030-drops-155277},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.16},
  annote =	{Keywords: Reachability, Matching, Logspace, Single-crossing minor free graphs}
}
Document
On the Edge Crossings of the Greedy Spanner

Authors: David Eppstein and Hadi Khodabandeh

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
The greedy t-spanner of a set of points in the plane is an undirected graph constructed by considering pairs of points in order by distance, and connecting a pair by an edge when there does not already exist a path connecting that pair with length at most t times the Euclidean distance. We prove that, for any t > 1, these graphs have at most a linear number of crossings, and more strongly that the intersection graph of edges in a greedy t-spanner has bounded degeneracy. As a consequence, we prove a separator theorem for greedy spanners: any k-vertex subgraph of a greedy spanner can be partitioned into sub-subgraphs of size a constant fraction smaller, by the removal of O(√k) vertices. A recursive separator hierarchy for these graphs can be constructed from their planarizations in linear time, or in near-linear time if the planarization is unknown.

Cite as

David Eppstein and Hadi Khodabandeh. On the Edge Crossings of the Greedy Spanner. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 33:1-33:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.SoCG.2021.33,
  author =	{Eppstein, David and Khodabandeh, Hadi},
  title =	{{On the Edge Crossings of the Greedy Spanner}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{33:1--33:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.33},
  URN =		{urn:nbn:de:0030-drops-138328},
  doi =		{10.4230/LIPIcs.SoCG.2021.33},
  annote =	{Keywords: Geometric Spanners, Greedy Spanners, Separators, Crossing Graph, Sparsity}
}
Document
On the Treewidth of Hanoi Graphs

Authors: David Eppstein, Daniel Frishberg, and William Maxwell

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
The objective of the well-known Towers of Hanoi puzzle is to move a set of disks one at a time from one of a set of pegs to another, while keeping the disks sorted on each peg. We propose an adversarial variation in which the first player forbids a set of states in the puzzle, and the second player must then convert one randomly-selected state to another without passing through forbidden states. Analyzing this version raises the question of the treewidth of Hanoi graphs. We find this number exactly for three-peg puzzles and provide nearly-tight asymptotic bounds for larger numbers of pegs.

Cite as

David Eppstein, Daniel Frishberg, and William Maxwell. On the Treewidth of Hanoi Graphs. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 13:1-13:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{eppstein_et_al:LIPIcs.FUN.2021.13,
  author =	{Eppstein, David and Frishberg, Daniel and Maxwell, William},
  title =	{{On the Treewidth of Hanoi Graphs}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{13:1--13:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.13},
  URN =		{urn:nbn:de:0030-drops-127741},
  doi =		{10.4230/LIPIcs.FUN.2021.13},
  annote =	{Keywords: Hanoi graph, Treewidth, Graph separators, Kneser graph, Vertex expansion, Haven, Tensor product}
}
Document
Low-Stretch Spanning Trees of Graphs with Bounded Width

Authors: Glencora Borradaile, Erin Wolf Chambers, David Eppstein, William Maxwell, and Amir Nayyeri

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
We study the problem of low-stretch spanning trees in graphs of bounded width: bandwidth, cutwidth, and treewidth. We show that any simple connected graph G with a linear arrangement of bandwidth b can be embedded into a distribution T of spanning trees such that the expected stretch of each edge of G is O(b²). Our proof implies a linear time algorithm for sampling from T. Therefore, we have a linear time algorithm that finds a spanning tree of G with average stretch O(b²) with high probability. We also describe a deterministic linear-time algorithm for computing a spanning tree of G with average stretch O(b³). For graphs of cutwidth c, we construct a spanning tree with stretch O(c²) in linear time. Finally, when G has treewidth k we provide a dynamic programming algorithm computing a minimum stretch spanning tree of G that runs in polynomial time with respect to the number of vertices of G.

Cite as

Glencora Borradaile, Erin Wolf Chambers, David Eppstein, William Maxwell, and Amir Nayyeri. Low-Stretch Spanning Trees of Graphs with Bounded Width. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{borradaile_et_al:LIPIcs.SWAT.2020.15,
  author =	{Borradaile, Glencora and Chambers, Erin Wolf and Eppstein, David and Maxwell, William and Nayyeri, Amir},
  title =	{{Low-Stretch Spanning Trees of Graphs with Bounded Width}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.15},
  URN =		{urn:nbn:de:0030-drops-122622},
  doi =		{10.4230/LIPIcs.SWAT.2020.15},
  annote =	{Keywords: Treewidth, low-stretch spanning tree, fundamental cycle basis}
}
  • Refine by Author
  • 30 Eppstein, David
  • 7 Goodrich, Michael T.
  • 5 Frishberg, Daniel
  • 4 Biniaz, Ahmad
  • 4 Bose, Prosenjit
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Treewidth
  • 2 3-SAT
  • 2 fixed-parameter tractability
  • 2 graph algorithm
  • 2 graph drawing
  • Show More...

  • Refine by Type
  • 69 document
  • 1 volume

  • Refine by Publication Year
  • 41 2018
  • 7 2019
  • 5 2023
  • 4 2020
  • 3 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail