2 Search Results for "Fabiański, Grzegorz"


Document
Lower Bounds for Off-Chain Protocols: Exploring the Limits of Plasma

Authors: Stefan Dziembowski, Grzegorz Fabiański, Sebastian Faust, and Siavash Riahi

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Blockchain is a disruptive new technology introduced around a decade ago. It can be viewed as a method for recording timestamped transactions in a public database. Most of blockchain protocols do not scale well, i.e., they cannot process quickly large amounts of transactions. A natural idea to deal with this problem is to use the blockchain only as a timestamping service, i.e., to hash several transactions tx_1,…,tx_m into one short string, and just put this string on the blockchain, while at the same time posting the hashed transactions tx_1,…,tx_m to some public place on the Internet ("off-chain"). In this way the transactions tx_i remain timestamped, but the amount of data put on the blockchain is greatly reduced. This idea was introduced in 2017 under the name Plasma by Poon and Buterin. Shortly after this proposal, several variants of Plasma have been proposed. They are typically built on top of the Ethereum blockchain, as they strongly rely on so-called smart contracts (in order to resolve disputes between the users if some of them start cheating). Plasmas are an example of so-called off-chain protocols. In this work we initiate the study of the inherent limitations of Plasma protocols. More concretely, we show that in every Plasma system the adversary can either (a) force the honest parties to communicate a lot with the blockchain, even though they did not intend to (this is traditionally called mass exit); or (b) an honest party that wants to leave the system needs to quickly communicate large amounts of data to the blockchain. What makes these attacks particularly hard to handle in real life is that these attacks do not have so-called uniquely attributable faults, i.e. the smart contract cannot determine which party is malicious, and hence cannot force it to pay the fees for the blockchain interaction. An important implication of our result is that the benefits of two of the most prominent Plasma types, called Plasma Cash and Fungible Plasma, cannot be achieved simultaneously. Besides of the direct implications on real-life cryptocurrency research, we believe that this work may open up a new line of theoretical research, as, up to our knowledge, this is the first work that provides an impossibility result in the area of off-chain protocols.

Cite as

Stefan Dziembowski, Grzegorz Fabiański, Sebastian Faust, and Siavash Riahi. Lower Bounds for Off-Chain Protocols: Exploring the Limits of Plasma. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 72:1-72:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dziembowski_et_al:LIPIcs.ITCS.2021.72,
  author =	{Dziembowski, Stefan and Fabia\'{n}ski, Grzegorz and Faust, Sebastian and Riahi, Siavash},
  title =	{{Lower Bounds for Off-Chain Protocols: Exploring the Limits of Plasma}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{72:1--72:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.72},
  URN =		{urn:nbn:de:0030-drops-136113},
  doi =		{10.4230/LIPIcs.ITCS.2021.72},
  annote =	{Keywords: blockchain, lower bounds, off-chain protocol, commit chain, plasma}
}
Document
Progressive Algorithms for Domination and Independence

Authors: Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We consider a generic algorithmic paradigm that we call progressive exploration, which can be used to develop simple and efficient parameterized graph algorithms. We identify two model-theoretic properties that lead to efficient progressive algorithms, namely variants of the Helly property and stability. We demonstrate our approach by giving linear-time fixed-parameter algorithms for the Distance-r Dominating Set problem (parameterized by the solution size) in a wide variety of restricted graph classes, such as powers of nowhere dense classes, map graphs, and (for r=1) biclique-free graphs. Similarly, for the Distance-r Independent Set problem the technique can be used to give a linear-time fixed-parameter algorithm on any nowhere dense class. Despite the simplicity of the method, in several cases our results extend known boundaries of tractability for the considered problems and improve the best known running times.

Cite as

Grzegorz Fabiański, Michał Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. Progressive Algorithms for Domination and Independence. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fabianski_et_al:LIPIcs.STACS.2019.27,
  author =	{Fabia\'{n}ski, Grzegorz and Pilipczuk, Micha{\l} and Siebertz, Sebastian and Toru\'{n}czyk, Szymon},
  title =	{{Progressive Algorithms for Domination and Independence}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.27},
  URN =		{urn:nbn:de:0030-drops-102660},
  doi =		{10.4230/LIPIcs.STACS.2019.27},
  annote =	{Keywords: Dominating Set, Independent Set, nowhere denseness, stability, fixed-parameter tractability}
}
  • Refine by Author
  • 2 Fabiański, Grzegorz
  • 1 Dziembowski, Stefan
  • 1 Faust, Sebastian
  • 1 Pilipczuk, Michał
  • 1 Riahi, Siavash
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Security and privacy
  • 1 Security and privacy → Cryptography
  • 1 Theory of computation → Finite Model Theory
  • 1 Theory of computation → Fixed parameter tractability

  • Refine by Keyword
  • 1 Dominating Set
  • 1 Independent Set
  • 1 blockchain
  • 1 commit chain
  • 1 fixed-parameter tractability
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021