2 Search Results for "Fawzi, Hamza"


Document
On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups

Authors: Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, and Swagato Sanyal

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given an Abelian group 𝒢, a Boolean-valued function f: 𝒢 → {-1,+1}, is said to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the domain 𝒢. In a seminal paper, Gopalan et al. [Gopalan et al., 2011] proved "Granularity" for Fourier coefficients of Boolean valued functions over ℤ₂ⁿ, that have found many diverse applications in theoretical computer science and combinatorics. They also studied structural results for Boolean functions over ℤ₂ⁿ which are approximately Fourier-sparse. In this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions over Abelian groups 𝒢 of the form, 𝒢: = ℤ_{p_1}^{n_1} × ⋯ × ℤ_{p_t}^{n_t}, for distinct primes p_i. We also obtain a lower bound of the form 1/(m²s)^⌈φ(m)/2⌉, on the absolute value of the smallest non-zero Fourier coefficient of an s-sparse function, where m = p_1 ⋯ p_t, and φ(m) = (p_1-1) ⋯ (p_t-1). We carefully apply probabilistic techniques from [Gopalan et al., 2011], to obtain our structural results, and use some non-trivial results from algebraic number theory to get the lower bound. We construct a family of at most s-sparse Boolean functions over ℤ_pⁿ, where p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier coefficient is o(1/s). The "Granularity" result of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse Boolean valued function over ℤ₂ⁿ are Ω(1/s). So, our result shows that one cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse functions, we design an efficient sparsity testing algorithm for Boolean function, which tests whether the given function is s-sparse, or ε-far from any sparse Boolean function, and it requires poly((ms)^φ(m),1/ε)-many queries. Further, we generalize the notion of degree of a Boolean function over an Abelian group 𝒢. We use it to prove an Ω(√s) lower bound on the query complexity of any adaptive sparsity testing algorithm.

Cite as

Sourav Chakraborty, Swarnalipa Datta, Pranjal Dutta, Arijit Ghosh, and Swagato Sanyal. On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2024.40,
  author =	{Chakraborty, Sourav and Datta, Swarnalipa and Dutta, Pranjal and Ghosh, Arijit and Sanyal, Swagato},
  title =	{{On Fourier Analysis of Sparse Boolean Functions over Certain Abelian Groups}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.40},
  URN =		{urn:nbn:de:0030-drops-205963},
  doi =		{10.4230/LIPIcs.MFCS.2024.40},
  annote =	{Keywords: Fourier coefficients, sparse, Abelian, granularity}
}
Document
A Subpolynomial-Time Algorithm for the Free Energy of One-Dimensional Quantum Systems in the Thermodynamic Limit

Authors: Hamza Fawzi, Omar Fawzi, and Samuel O. Scalet

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We introduce a classical algorithm to approximate the free energy of local, translation-invariant, one-dimensional quantum systems in the thermodynamic limit of infinite chain size. While the ground state problem (i.e., the free energy at temperature T = 0) for these systems is expected to be computationally hard even for quantum computers, our algorithm runs for any fixed temperature T > 0 in subpolynomial time, i.e., in time O((1/ε)^c) for any constant c > 0 where ε is the additive approximation error. Previously, the best known algorithm had a runtime that is polynomial in 1/ε where the degree of the polynomial is exponential in the inverse temperature 1/T. Our algorithm is also particularly simple as it reduces to the computation of the spectral radius of a linear map. This linear map has an interpretation as a noncommutative transfer matrix and has been studied previously to prove results on the analyticity of the free energy and the decay of correlations. We also show that the corresponding eigenvector of this map gives an approximation of the marginal of the Gibbs state and thereby allows for the computation of various thermodynamic properties of the quantum system.

Cite as

Hamza Fawzi, Omar Fawzi, and Samuel O. Scalet. A Subpolynomial-Time Algorithm for the Free Energy of One-Dimensional Quantum Systems in the Thermodynamic Limit. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 49:1-49:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fawzi_et_al:LIPIcs.ITCS.2023.49,
  author =	{Fawzi, Hamza and Fawzi, Omar and Scalet, Samuel O.},
  title =	{{A Subpolynomial-Time Algorithm for the Free Energy of One-Dimensional Quantum Systems in the Thermodynamic Limit}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{49:1--49:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.49},
  URN =		{urn:nbn:de:0030-drops-175520},
  doi =		{10.4230/LIPIcs.ITCS.2023.49},
  annote =	{Keywords: One-dimensional quantum systems, Free energy}
}
  • Refine by Author
  • 1 Chakraborty, Sourav
  • 1 Datta, Swarnalipa
  • 1 Dutta, Pranjal
  • 1 Fawzi, Hamza
  • 1 Fawzi, Omar
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing
  • 1 Theory of computation
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Quantum complexity theory
  • 1 Theory of computation → Quantum information theory

  • Refine by Keyword
  • 1 Abelian
  • 1 Fourier coefficients
  • 1 Free energy
  • 1 One-dimensional quantum systems
  • 1 granularity
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail