47 Search Results for "Felty, Amy P."


Volume

LIPIcs, Volume 228

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)

FSCD 2022, August 2-5, 2022, Haifa, Israel

Editors: Amy P. Felty

Document
Taming Differentiable Logics with Coq Formalisation

Authors: Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, and Kathrin Stark

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
For performance and verification in machine learning, new methods have recently been proposed that optimise learning systems to satisfy formally expressed logical properties. Among these methods, differentiable logics (DLs) are used to translate propositional or first-order formulae into loss functions deployed for optimisation in machine learning. At the same time, recent attempts to give programming language support for verification of neural networks showed that DLs can be used to compile verification properties to machine-learning backends. This situation is calling for stronger guarantees about the soundness of such compilers, the soundness and compositionality of DLs, and the differentiability and performance of the resulting loss functions. In this paper, we propose an approach to formalise existing DLs using the Mathematical Components library in the Coq proof assistant. Thanks to this formalisation, we are able to give uniform semantics to otherwise disparate DLs, give formal proofs to existing informal arguments, find errors in previous work, and provide formal proofs to missing conjectured properties. This work is meant as a stepping stone for the development of programming language support for verification of machine learning.

Cite as

Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, and Kathrin Stark. Taming Differentiable Logics with Coq Formalisation. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{affeldt_et_al:LIPIcs.ITP.2024.4,
  author =	{Affeldt, Reynald and Bruni, Alessandro and Komendantskaya, Ekaterina and \'{S}lusarz, Natalia and Stark, Kathrin},
  title =	{{Taming Differentiable Logics with Coq Formalisation}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.4},
  URN =		{urn:nbn:de:0030-drops-207325},
  doi =		{10.4230/LIPIcs.ITP.2024.4},
  annote =	{Keywords: Machine Learning, Loss Functions, Differentiable Logics, Logic and Semantics, Interactive Theorem Proving}
}
Document
Towards Solid Abelian Groups: A Formal Proof of Nöbeling’s Theorem

Authors: Dagur Asgeirsson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Condensed mathematics, developed by Clausen and Scholze over the last few years, is a new way of studying the interplay between algebra and geometry. It replaces the concept of a topological space by a more sophisticated but better-behaved idea, namely that of a condensed set. Central to the theory are solid abelian groups and liquid vector spaces, analogues of complete topological groups. Nöbeling’s theorem, a surprising result from the 1960s about the structure of the abelian group of continuous maps from a profinite space to the integers, is a crucial ingredient in the theory of solid abelian groups; without it one cannot give any nonzero examples of solid abelian groups. We discuss a recently completed formalisation of this result in the Lean theorem prover, and give a more detailed proof than those previously available in the literature. The proof is somewhat unusual in that it requires induction over ordinals - a technique which has not previously been used to a great extent in formalised mathematics.

Cite as

Dagur Asgeirsson. Towards Solid Abelian Groups: A Formal Proof of Nöbeling’s Theorem. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{asgeirsson:LIPIcs.ITP.2024.6,
  author =	{Asgeirsson, Dagur},
  title =	{{Towards Solid Abelian Groups: A Formal Proof of N\"{o}beling’s Theorem}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.6},
  URN =		{urn:nbn:de:0030-drops-207347},
  doi =		{10.4230/LIPIcs.ITP.2024.6},
  annote =	{Keywords: Condensed mathematics, N\"{o}beling’s theorem, Lean, Mathlib, Interactive theorem proving}
}
Document
The Directed Van Kampen Theorem in Lean

Authors: Henning Basold, Peter Bruin, and Dominique Lawson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Directed topology augments the concept of a topological space with a notion of directed paths. This leads to a category of directed spaces, in which the morphisms are continuous maps respecting directed paths. Directed topology thereby enables an accurate representation of computation paths in concurrent systems that usually cannot be reversed. Even though ideas from algebraic topology have analogues in directed topology, the directedness drastically changes how spaces can be characterised. For instance, while an important homotopy invariant of a topological space is its fundamental groupoid, for directed spaces this has to be replaced by the fundamental category because directed paths are not necessarily reversible. In this paper, we present a Lean 4 formalisation of directed spaces and of a Van Kampen theorem for them, which allows the fundamental category of a directed space to be computed in terms of the fundamental categories of subspaces. Part of this formalisation is also a significant theory of directed spaces, directed homotopy theory and path coverings, which can serve as basis for future formalisations of directed topology. The formalisation in Lean can also be used in computer-assisted reasoning about the behaviour of concurrent systems that have been represented as directed spaces.

Cite as

Henning Basold, Peter Bruin, and Dominique Lawson. The Directed Van Kampen Theorem in Lean. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{basold_et_al:LIPIcs.ITP.2024.8,
  author =	{Basold, Henning and Bruin, Peter and Lawson, Dominique},
  title =	{{The Directed Van Kampen Theorem in Lean}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.8},
  URN =		{urn:nbn:de:0030-drops-207368},
  doi =		{10.4230/LIPIcs.ITP.2024.8},
  annote =	{Keywords: Lean, Directed Topology, Van Kampen Theorem, Directed Homotopy Theory, Formalised Mathematics}
}
Document
A Generalised Union of Rely-Guarantee and Separation Logic Using Permission Algebras

Authors: Vincent Jackson, Toby Murray, and Christine Rizkallah

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
This paper describes GenRGSep, an Isabelle/HOL library for the development of RGSep logics using a general algebraic state model. In particular, we develop an algebraic state models based on resource algebras that assume neither the presence of unit resources or the cancellativity law. If a new resource model is required, its components need only be proven an instance of a permission algebra, and then they can be composed together using tuples and functions. The proof of soundness is performed by Vafeiadis' operational soundness method. This method was originally formulated with respect to a concrete heap model. This paper adapts it to account for the absence of both units as well as the cancellativity law.

Cite as

Vincent Jackson, Toby Murray, and Christine Rizkallah. A Generalised Union of Rely-Guarantee and Separation Logic Using Permission Algebras. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jackson_et_al:LIPIcs.ITP.2024.23,
  author =	{Jackson, Vincent and Murray, Toby and Rizkallah, Christine},
  title =	{{A Generalised Union of Rely-Guarantee and Separation Logic Using Permission Algebras}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{23:1--23:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.23},
  URN =		{urn:nbn:de:0030-drops-207510},
  doi =		{10.4230/LIPIcs.ITP.2024.23},
  annote =	{Keywords: verification, concurrency, rely-guarantee, separation logic, resource algebras}
}
Document
Formal Verification of the Empty Hexagon Number

Authors: Bernardo Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario Carneiro, and Marijn J. H. Heule

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
A recent breakthrough in computer-assisted mathematics showed that every set of 30 points in the plane in general position (i.e., no three points on a common line) contains an empty convex hexagon. Heule and Scheucher solved this problem with a combination of geometric insights and automated reasoning techniques by constructing CNF formulas ϕ_n, with O(n⁴) clauses, such that if ϕ_n is unsatisfiable then every set of n points in general position must contain an empty convex hexagon. An unsatisfiability proof for n = 30 was then found with a SAT solver using 17 300 CPU hours of parallel computation. In this paper, we formalize and verify this result in the Lean theorem prover. Our formalization covers ideas in discrete computational geometry and SAT encoding techniques by introducing a framework that connects geometric objects to propositional assignments. We see this as a key step towards the formal verification of other SAT-based results in geometry, since the abstractions we use have been successfully applied to similar problems. Overall, we hope that our work sets a new standard for the verification of geometry problems relying on extensive computation, and that it increases the trust the mathematical community places in computer-assisted proofs.

Cite as

Bernardo Subercaseaux, Wojciech Nawrocki, James Gallicchio, Cayden Codel, Mario Carneiro, and Marijn J. H. Heule. Formal Verification of the Empty Hexagon Number. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{subercaseaux_et_al:LIPIcs.ITP.2024.35,
  author =	{Subercaseaux, Bernardo and Nawrocki, Wojciech and Gallicchio, James and Codel, Cayden and Carneiro, Mario and Heule, Marijn J. H.},
  title =	{{Formal Verification of the Empty Hexagon Number}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.35},
  URN =		{urn:nbn:de:0030-drops-207633},
  doi =		{10.4230/LIPIcs.ITP.2024.35},
  annote =	{Keywords: Empty Hexagon Number, Discrete Computational Geometry, Erd\H{o}s-Szekeres}
}
Document
Simple Qudit ZX and ZH Calculi, via Integrals

Authors: Niel de Beaudrap and Richard D. P. East

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The ZX calculus and ZH calculus use diagrams to denote and compute properties of quantum operations, using "rewrite rules" to transform between diagrams which denote the same operator through a functorial semantic map. Different semantic maps give rise to different rewrite systems, which may prove more convenient for different purposes. Using discrete measures, we describe semantic maps for ZX and ZH diagrams, well-suited to analyse unitary circuits and measurements on qudits of any fixed dimension D > 1 as a single "ZXH-calculus". We demonstrate rewrite rules for the "stabiliser fragment" of the ZX calculus and a "multicharacter fragment" of the ZH calculus.

Cite as

Niel de Beaudrap and Richard D. P. East. Simple Qudit ZX and ZH Calculi, via Integrals. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{debeaudrap_et_al:LIPIcs.MFCS.2024.20,
  author =	{de Beaudrap, Niel and East, Richard D. P.},
  title =	{{Simple Qudit ZX and ZH Calculi, via Integrals}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.20},
  URN =		{urn:nbn:de:0030-drops-205761},
  doi =		{10.4230/LIPIcs.MFCS.2024.20},
  annote =	{Keywords: ZX-calculus, ZH-calculus, qudits, string diagrams, discrete integrals}
}
Document
Finite Combinatory Logic with Predicates

Authors: Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Type inhabitation in extensions of Finite Combinatory Logic (FCL) is the mechanism underlying various component-oriented synthesis frameworks. In FCL inhabitant sets correspond to regular tree languages and vice versa. Therefore, it is not possible to specify non-regular properties of inhabitants, such as (dis)equality of subterms. Additionally, the monomorphic nature of FCL oftentimes hinders concise specification of components. We propose a conservative extension to FCL by quantifiers and predicates, introducing a restricted form of polymorphism. In the proposed type system (FCLP) inhabitant sets correspond to decidable term languages and vice versa. As a consequence, type inhabitation in FCLP is undecidable. Based on results in tree automata theory, we identify a fragment of FCLP with the following two properties. First, the fragment enjoys decidable type inhabitation. Second, it allows for specification of local (dis)equality constraints for subterms of inhabitants. For empirical evaluation, we implement a semi-decision procedure for type inhabitation in FCLP. We compare specification capabilities, scalability, and performance of the implementation to existing FCL-based approaches. Finally, we evaluate practical applicability via a case study, synthesizing mechanically sound robotic arms.

Cite as

Andrej Dudenhefner, Christoph Stahl, Constantin Chaumet, Felix Laarmann, and Jakob Rehof. Finite Combinatory Logic with Predicates. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 2:1-2:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudenhefner_et_al:LIPIcs.TYPES.2023.2,
  author =	{Dudenhefner, Andrej and Stahl, Christoph and Chaumet, Constantin and Laarmann, Felix and Rehof, Jakob},
  title =	{{Finite Combinatory Logic with Predicates}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{2:1--2:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.2},
  URN =		{urn:nbn:de:0030-drops-204808},
  doi =		{10.4230/LIPIcs.TYPES.2023.2},
  annote =	{Keywords: combinatory logic, inhabitation, intersection types, program synthesis}
}
Document
Invited Talk
Lean: Past, Present, and Future (Invited Talk)

Authors: Sebastian Ullrich

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
The Lean programming language and theorem prover project is celebrating its tenth birthday this year, having been started by Leonardo de Moura at Microsoft Research and first release as Lean 0.1 in 2014. In this invited talk, I will review Lean’s history and unique features and discuss our roadmap for its bright future. Corresponding to its major versions ranging from Lean 0.1 to the current version of Lean 4, the focus of the Lean project has evolved over the years. Initially intended as a platform for developing white-box automation, in contrast to the usual black-box approach of stand-alone SMT solvers [de Moura and Passmore, 2013], the system gathered more conventional features of dependently-typed interactive theorem provers as well as an initial crowd of interested mathematicians and computer scientists with its first official release as Lean 2 in 2015 [Leonardo de Moura et al., 2015]. Lean 3 in 2017 introduced user-extensible automation by extending Lean from a specification language to an accessible metaprogramming language [Gabriel Ebner et al., 2017], further accelerating growth of its mathematical library that was spun out into the separate Mathlib project [{The mathlib Community}, 2020]. Spurred by the success but also limitations of this extensibility, we started work on the next version Lean 4 in 2018 [Leonardo de Moura and Sebastian Ullrich, 2021] with the goal of turning Lean into a general-purpose programming language that would allow us to reimplement Lean in Lean itself and thereby make many more aspects of the system user-extensible, in a more efficient manner [Sebastian Ullrich, 2023]. This to date largest rework of Lean’s implementation was completed in 2023 with the official release of Lean 4.0.0, further supporting Mathlib’s growth to more than 1.5 million lines of code at the time of writing as well as improving support for many other applications such as software verification. In 2023, Lean also saw its largest organizational change when Leo and I created the Lean Focused Research Organization (FRO) to bundle and support development of Lean in a dedicated organization for the first time. Thanks to gracious support from philanthropic sponsors, an unprecedented number of currently twelve people now work on the evolution of Lean at the Lean FRO. And there is much left to do: with our new team size, we can now support development on much more than only core features, such as documentation, a robust standard library, and user interfaces and experience as well as a return to the original topic of advanced proof automation. The Lean FRO is committed to ensuring and extending Lean’s applicability in education, research, and industry and to leading it into the next decade of Lean development and beyond.

Cite as

Sebastian Ullrich. Lean: Past, Present, and Future (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ullrich:LIPIcs.FSCD.2024.3,
  author =	{Ullrich, Sebastian},
  title =	{{Lean: Past, Present, and Future}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.3},
  URN =		{urn:nbn:de:0030-drops-203328},
  doi =		{10.4230/LIPIcs.FSCD.2024.3},
  annote =	{Keywords: Lean, interactive theorem proving, focused research organization, history}
}
Document
Univalent Enriched Categories and the Enriched Rezk Completion

Authors: Niels van der Weide

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Enriched categories are categories whose sets of morphisms are enriched with extra structure. Such categories play a prominent role in the study of higher categories, homotopy theory, and the semantics of programming languages. In this paper, we study univalent enriched categories. We prove that all essentially surjective and fully faithful functors between univalent enriched categories are equivalences, and we show that every enriched category admits a Rezk completion. Finally, we use the Rezk completion for enriched categories to construct univalent enriched Kleisli categories.

Cite as

Niels van der Weide. Univalent Enriched Categories and the Enriched Rezk Completion. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderweide:LIPIcs.FSCD.2024.4,
  author =	{van der Weide, Niels},
  title =	{{Univalent Enriched Categories and the Enriched Rezk Completion}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.4},
  URN =		{urn:nbn:de:0030-drops-203337},
  doi =		{10.4230/LIPIcs.FSCD.2024.4},
  annote =	{Keywords: enriched categories, univalent categories, homotopy type theory, univalent foundations, Rezk completion}
}
Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti

Authors: Thiago Felicissimo and Théo Winterhalter

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Proof assistants such as Coq implement a type theory featuring three important features: impredicativity, cumulativity and product covariance. This combination has proven difficult to be expressed in the logical framework Dedukti, and previous attempts have failed in providing an encoding that is proven confluent, sound and conservative. In this work we solve this longstanding open problem by providing an encoding of these three features that we prove to be confluent, sound and to satisfy a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a contribution by itself, and combines various criteria and proof techniques from rewriting theory. Our proof of soundness also contributes a new strategy in which the result is shown in terms of an inverse translation function, fixing a common flaw made in some previous encoding attempts.

Cite as

Thiago Felicissimo and Théo Winterhalter. Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{felicissimo_et_al:LIPIcs.FSCD.2024.21,
  author =	{Felicissimo, Thiago and Winterhalter, Th\'{e}o},
  title =	{{Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.21},
  URN =		{urn:nbn:de:0030-drops-203503},
  doi =		{10.4230/LIPIcs.FSCD.2024.21},
  annote =	{Keywords: Dedukti, Rewriting, Confluence, Dependent types, Cumulativity, Universes}
}
Document
Complete Volume
LIPIcs, Volume 228, FSCD 2022, Complete Volume

Authors: Amy P. Felty

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
LIPIcs, Volume 228, FSCD 2022, Complete Volume

Cite as

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 1-652, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{felty:LIPIcs.FSCD.2022,
  title =	{{LIPIcs, Volume 228, FSCD 2022, Complete Volume}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{1--652},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022},
  URN =		{urn:nbn:de:0030-drops-162803},
  doi =		{10.4230/LIPIcs.FSCD.2022},
  annote =	{Keywords: LIPIcs, Volume 228, FSCD 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Amy P. Felty

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 0:i-0:xviii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{felty:LIPIcs.FSCD.2022.0,
  author =	{Felty, Amy P.},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.0},
  URN =		{urn:nbn:de:0030-drops-162814},
  doi =		{10.4230/LIPIcs.FSCD.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Cutting a Proof into Bite-Sized Chunks: Incrementally proving termination in higher-order term rewriting (Invited Talk)

Authors: Cynthia Kop

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
This paper discusses a number of methods to prove termination of higher-order term rewriting systems, with a particular focus on large systems. In first-order term rewriting, the dependency pair framework can be used to split up a large termination problem into multiple (much) smaller components that can be solved individually. This is important because a large problem may take exponentially longer to solve in one go than solving each of its components. Unfortunately, while there are higher-order versions of several of these methods, they often fail to simplify a problem enough. Here, we will explore some of these techniques and their limitations, and discuss what else can be done to incrementally build a termination proof for higher-order systems.

Cite as

Cynthia Kop. Cutting a Proof into Bite-Sized Chunks: Incrementally proving termination in higher-order term rewriting (Invited Talk). In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 1:1-1:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kop:LIPIcs.FSCD.2022.1,
  author =	{Kop, Cynthia},
  title =	{{Cutting a Proof into Bite-Sized Chunks: Incrementally proving termination in higher-order term rewriting}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{1:1--1:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.1},
  URN =		{urn:nbn:de:0030-drops-162827},
  doi =		{10.4230/LIPIcs.FSCD.2022.1},
  annote =	{Keywords: Termination, Modularity, Higher-order term rewriting, Dependency Pairs, Algebra Interpretations}
}
  • Refine by Author
  • 3 Felty, Amy P.
  • 2 Dudenhefner, Andrej
  • 2 Felicissimo, Thiago
  • 2 Laarmann, Felix
  • 2 Rehof, Jakob
  • Show More...

  • Refine by Classification
  • 14 Theory of computation → Type theory
  • 11 Theory of computation → Equational logic and rewriting
  • 7 Theory of computation → Logic and verification
  • 6 Theory of computation → Proof theory
  • 5 Theory of computation → Lambda calculus
  • Show More...

  • Refine by Keyword
  • 3 Lean
  • 3 rewriting
  • 2 Agda
  • 2 Coq
  • 2 Dedukti
  • Show More...

  • Refine by Type
  • 46 document
  • 1 volume

  • Refine by Publication Year
  • 35 2022
  • 11 2024
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail