19 Search Results for "Figueira, Diego"


Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Bi-Reachability in Petri Nets with Data

Authors: Łukasz Kamiński and Sławomir Lasota

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from an infinite data domain, and executability of transitions is conditioned by equalities between data values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its two configurations, we ask if each of the configurations is reachable from the other. This pushes forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem (which is known to be decidable) and is subsumed by the reachability problem (whose decidability status is unknown).

Cite as

Łukasz Kamiński and Sławomir Lasota. Bi-Reachability in Petri Nets with Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaminski_et_al:LIPIcs.CONCUR.2024.31,
  author =	{Kami\'{n}ski, {\L}ukasz and Lasota, S{\l}awomir},
  title =	{{Bi-Reachability in Petri Nets with Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.31},
  URN =		{urn:nbn:de:0030-drops-208038},
  doi =		{10.4230/LIPIcs.CONCUR.2024.31},
  annote =	{Keywords: Petri nets, Petri nets with data, reachability, bi-reachability, reversible reachability, mutual reachability, orbit-finite sets}
}
Document
Nominal Tree Automata with Name Allocation

Authors: Simon Prucker and Lutz Schröder

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Data trees serve as an abstraction of structured data, such as XML documents. A number of specification formalisms for languages of data trees have been developed, many of them adhering to the paradigm of register automata, which is based on storing data values encountered on the tree in registers for subsequent comparison with further data values. Already on word languages, the expressiveness of such automata models typically increases with the power of control (e.g. deterministic, non-deterministic, alternating). Language inclusion is typically undecidable for non-deterministic or alternating models unless the number of registers is radically restricted, and even then often remains non-elementary. We present an automaton model for data trees that retains a reasonable level of expressiveness, in particular allows non-determinism and any number of registers, while admitting language inclusion checking in elementary complexity, in fact in parametrized exponential time. We phrase the description of our automaton model in the language of nominal sets, building on the recently introduced paradigm of explicit name allocation in nominal automata.

Cite as

Simon Prucker and Lutz Schröder. Nominal Tree Automata with Name Allocation. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{prucker_et_al:LIPIcs.CONCUR.2024.35,
  author =	{Prucker, Simon and Schr\"{o}der, Lutz},
  title =	{{Nominal Tree Automata with Name Allocation}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.35},
  URN =		{urn:nbn:de:0030-drops-208071},
  doi =		{10.4230/LIPIcs.CONCUR.2024.35},
  annote =	{Keywords: Data languages, tree automata, nominal automata, inclusion checking}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On the Length of Strongly Monotone Descending Chains over ℕ^d

Authors: Sylvain Schmitz and Lia Schütze

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A recent breakthrough by Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki (ICALP 2023) bounds the running time for the coverability problem in d-dimensional vector addition systems under unary encoding to n^{2^{O(d)}}, improving on Rackoff’s n^{2^{O(dlg d)}} upper bound (Theor. Comput. Sci. 1978), and provides conditional matching lower bounds. In this paper, we revisit Lazić and Schmitz' "ideal view" of the backward coverability algorithm (Inform. Comput. 2021) in the light of this breakthrough. We show that the controlled strongly monotone descending chains of downwards-closed sets over ℕ^d that arise from the dual backward coverability algorithm of Lazić and Schmitz on d-dimensional unary vector addition systems also enjoy this tight n^{2^{O(d)}} upper bound on their length, and that this also translates into the same bound on the running time of the backward coverability algorithm. Furthermore, our analysis takes place in a more general setting than that of Lazić and Schmitz, which allows to show the same results and improve on the 2EXPSPACE upper bound derived by Benedikt, Duff, Sharad, and Worrell (LICS 2017) for the coverability problem in invertible affine nets.

Cite as

Sylvain Schmitz and Lia Schütze. On the Length of Strongly Monotone Descending Chains over ℕ^d. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 153:1-153:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schmitz_et_al:LIPIcs.ICALP.2024.153,
  author =	{Schmitz, Sylvain and Sch\"{u}tze, Lia},
  title =	{{On the Length of Strongly Monotone Descending Chains over \mathbb{N}^d}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{153:1--153:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.153},
  URN =		{urn:nbn:de:0030-drops-202964},
  doi =		{10.4230/LIPIcs.ICALP.2024.153},
  annote =	{Keywords: Vector addition system, coverability, well-quasi-order, order ideal, affine net}
}
Document
Containment of Regular Path Queries Under Path Constraints

Authors: Sylvain Salvati and Sophie Tison

Published in: LIPIcs, Volume 290, 27th International Conference on Database Theory (ICDT 2024)


Abstract
Data integrity is ensured by expressing constraints it should satisfy. One can also view constraints as data properties and take advantage of them for several tasks such as reasoning about data or accelerating query processing. In the context of graph databases, simple constraints can be expressed by means of path constraints while simple queries are modeled as regular path queries (RPQs). In this paper, we investigate the containment of RPQs under path constraints. We focus on word constraints that can be viewed as tuple-generating dependencies (TGDs) of the form ∀x_1,x_2, ∃y⁻, a_1(x_1,y_1) ∧ ... ∧ a_i(y_{i-1},y_i) ∧ ... ∧ a_n(y_{n-1},x_2) ⟶ ∃z⁻, b_1(x_1,z_1) ∧ ... ∧ b_i(z_{i-1},z_i) ∧ ... ∧ b_m(z_{m-1},x_2). Such a constraint means that whenever two nodes in a graph are connected by a path labeled a_1 … a_n, there is also a path labeled b_1 … b_m that connects them. Rewrite systems offer an abstract view of these TGDs: the rewrite rule a_1 … a_n → b_1 … b_m represents the previous constraint. A set of constraints 𝒞 is then represented by a rewrite system R and, when dealing with possibly infinite databases, a path query p is contained in a path query q under the constraints 𝒞 iff p rewrites to q with R. Contrary to what has been claimed in the literature we show that, when restricting to finite databases only, there are cases where a path query p is contained in a path query q under the constraints 𝒞 while p does not rewrite to q with R. More generally, we study the finite controllability of the containment of RPQs under word constraints, that is when this containment problem on unrestricted databases does coincide with the finite case. We give an exact characterisation of the cases where this equivalence holds. We then deduce the undecidability of the containment problem in the finite case even when RPQs are restricted to word queries. We prove several properties related to finite controllability, and in particular that it is undecidable. We also exhibit some classes of word constraints that ensure the finite controllability and the decidability of the containment problem.

Cite as

Sylvain Salvati and Sophie Tison. Containment of Regular Path Queries Under Path Constraints. In 27th International Conference on Database Theory (ICDT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 290, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{salvati_et_al:LIPIcs.ICDT.2024.17,
  author =	{Salvati, Sylvain and Tison, Sophie},
  title =	{{Containment of Regular Path Queries Under Path Constraints}},
  booktitle =	{27th International Conference on Database Theory (ICDT 2024)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-312-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{290},
  editor =	{Cormode, Graham and Shekelyan, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2024.17},
  URN =		{urn:nbn:de:0030-drops-197994},
  doi =		{10.4230/LIPIcs.ICDT.2024.17},
  annote =	{Keywords: Graph databases, rational path queries, query containment, TGDs, word constraints, rewrite systems, finite controllability, decision problems}
}
Document
Separating Automatic Relations

Authors: Pablo Barceló, Diego Figueira, and Rémi Morvan

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We study the separability problem for automatic relations (i.e., relations on finite words definable by synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular languages). This problem takes as input two automatic relations R and R', and asks if there exists a recognizable relation S that contains R and does not intersect R'. We show this problem to be undecidable when the number of products allowed in the recognizable relation is fixed. In particular, checking if there exists a recognizable relation S with at most k products of regular languages that separates R from R' is undecidable, for each fixed k ⩾ 2. Our proofs reveal tight connections, of independent interest, between the separability problem and the finite coloring problem for automatic graphs, where colors are regular languages.

Cite as

Pablo Barceló, Diego Figueira, and Rémi Morvan. Separating Automatic Relations. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{barcelo_et_al:LIPIcs.MFCS.2023.17,
  author =	{Barcel\'{o}, Pablo and Figueira, Diego and Morvan, R\'{e}mi},
  title =	{{Separating Automatic Relations}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.17},
  URN =		{urn:nbn:de:0030-drops-185514},
  doi =		{10.4230/LIPIcs.MFCS.2023.17},
  annote =	{Keywords: Automatic relations, recognizable relations, separability, finite colorability}
}
Document
Approximation and Semantic Tree-Width of Conjunctive Regular Path Queries

Authors: Diego Figueira and Rémi Morvan

Published in: LIPIcs, Volume 255, 26th International Conference on Database Theory (ICDT 2023)


Abstract
We show that the problem of whether a query is equivalent to a query of tree-width k is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barceló, Romero, and Vardi [Pablo Barceló et al., 2016] has shown decidability for the case k = 1, and here we show that decidability in fact holds for any arbitrary k > 1. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form a^* or (a_1 + ... + a_n) we show that the complexity of the problem drops to Π^p_2. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number k, builds the maximal under-approximation of tree-width k of a UC2RPQ. The maximal under-approximation of tree-width k of a query q is a query q' of tree-width k which is contained in q in a maximal and unique way, that is, such that for every query q'' of tree-width k, if q'' is contained in q then q'' is also contained in q'.

Cite as

Diego Figueira and Rémi Morvan. Approximation and Semantic Tree-Width of Conjunctive Regular Path Queries. In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.ICDT.2023.15,
  author =	{Figueira, Diego and Morvan, R\'{e}mi},
  title =	{{Approximation and Semantic Tree-Width of Conjunctive Regular Path Queries}},
  booktitle =	{26th International Conference on Database Theory (ICDT 2023)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-270-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{255},
  editor =	{Geerts, Floris and Vandevoort, Brecht},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2023.15},
  URN =		{urn:nbn:de:0030-drops-177575},
  doi =		{10.4230/LIPIcs.ICDT.2023.15},
  annote =	{Keywords: graph databases, conjunctive regular path queries, semantic optimization, tree-width, containment, approximation}
}
Document
A Simple Algorithm for Consistent Query Answering Under Primary Keys

Authors: Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo

Published in: LIPIcs, Volume 255, 26th International Conference on Database Theory (ICDT 2023)


Abstract
We consider the dichotomy conjecture for consistent query answering under primary key constraints. It states that, for every fixed Boolean conjunctive query q, testing whether q is certain (i.e. whether it evaluates to true over all repairs of a given inconsistent database) is either polynomial time or coNP-complete. This conjecture has been verified for self-join-free and path queries. We propose a simple inflationary fixpoint algorithm for consistent query answering which, for a given database, naively computes a set Δ of subsets of database repairs with at most k facts, where k is the size of the query q. The algorithm runs in polynomial time and can be formally defined as: 1) Initialize Δ with all sets S of at most k facts such that S⊧ q. 2) Add any set S of at most k facts to Δ if there exists a block B (i.e., a maximal set of facts sharing the same key) such that for every fact a ∈ B there is a set S' ∈ Δ contained in S ∪ {a}. The algorithm answers "q is certain" iff Δ eventually contains the empty set. The algorithm correctly computes certainty when the query q falls in the polynomial time cases of the known dichotomies for self-join-free queries and path queries. For arbitrary Boolean conjunctive queries, the algorithm is an under-approximation: the query is guaranteed to be certain if the algorithm claims so. However, there are polynomial time certain queries (with self-joins) which are not identified as such by the algorithm.

Cite as

Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo. A Simple Algorithm for Consistent Query Answering Under Primary Keys. In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.ICDT.2023.24,
  author =	{Figueira, Diego and Padmanabha, Anantha and Segoufin, Luc and Sirangelo, Cristina},
  title =	{{A Simple Algorithm for Consistent Query Answering Under Primary Keys}},
  booktitle =	{26th International Conference on Database Theory (ICDT 2023)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-270-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{255},
  editor =	{Geerts, Floris and Vandevoort, Brecht},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2023.24},
  URN =		{urn:nbn:de:0030-drops-177663},
  doi =		{10.4230/LIPIcs.ICDT.2023.24},
  annote =	{Keywords: consistent query answering, primary keys, conjunctive queries}
}
Document
Universality Problem for Unambiguous VASS

Authors: Wojciech Czerwiński, Diego Figueira, and Piotr Hofman

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We study languages of unambiguous VASS, that is, Vector Addition Systems with States, whose transitions read letters from a finite alphabet, and whose acceptance condition is defined by a set of final states (i.e., the coverability language). We show that the problem of universality for unambiguous VASS is ExpSpace-complete, in sheer contrast to Ackermann-completeness for arbitrary VASS, even in dimension 1. When the dimension d ∈ ℕ is fixed, the universality problem is PSpace-complete if d ≥ 2, and coNP-hard for 1-dimensional VASSes (also known as One Counter Nets).

Cite as

Wojciech Czerwiński, Diego Figueira, and Piotr Hofman. Universality Problem for Unambiguous VASS. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.36,
  author =	{Czerwi\'{n}ski, Wojciech and Figueira, Diego and Hofman, Piotr},
  title =	{{Universality Problem for Unambiguous VASS}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.36},
  URN =		{urn:nbn:de:0030-drops-128486},
  doi =		{10.4230/LIPIcs.CONCUR.2020.36},
  annote =	{Keywords: unambiguity, vector addition systems, universality problems}
}
Document
Containment of UC2RPQ: The Hard and Easy Cases

Authors: Diego Figueira

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
We study the containment problem for UC2RPQ, that is, two-way Regular Path Queries, closed under conjunction, projection and union. We show a dichotomy property between PSpace-c and ExpSpace-c based on a property on the underlying graph of queries. We show that for any class C of graphs, the containment problem for queries whose underlying graph is in C is in PSpace if and only if C has bounded bridgewidth. Bridgewidth is a graph measure we introduce to this end, defined as the maximum size of a minimal edge separator of a graph.

Cite as

Diego Figueira. Containment of UC2RPQ: The Hard and Easy Cases. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{figueira:LIPIcs.ICDT.2020.9,
  author =	{Figueira, Diego},
  title =	{{Containment of UC2RPQ: The Hard and Easy Cases}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.9},
  URN =		{urn:nbn:de:0030-drops-119330},
  doi =		{10.4230/LIPIcs.ICDT.2020.9},
  annote =	{Keywords: Regular Path Queries (RPQ), 2RPQ, CRPQ, C2RPQ, UC2RPQ, graph databases, containment, inclusion, equivalence, dichotomy, graph measure, bridge-width (bridgewidth), minimal edge separator, minimal cut-set, max-cut, tree-width (treewidth)}
}
Document
The Quantifier Alternation Hierarchy of Synchronous Relations

Authors: Diego Figueira, Varun Ramanathan, and Pascal Weil

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
The class of synchronous relations, also known as automatic or regular, is one of the most studied subclasses of rational relations. It enjoys many desirable closure properties and is known to be logically characterized: the synchronous relations are exactly those that are defined by a first-order formula on the structure of all finite words, with the prefix, equal-length and last-letter predicates. Here, we study the quantifier alternation hierarchy of this logic. We show that it collapses at level Sigma_3 and that all levels below admit decidable characterizations. Our results reveal the connections between this hierarchy and the well-known hierarchy of first-order defined languages of finite words.

Cite as

Diego Figueira, Varun Ramanathan, and Pascal Weil. The Quantifier Alternation Hierarchy of Synchronous Relations. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 29:1-29:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.MFCS.2019.29,
  author =	{Figueira, Diego and Ramanathan, Varun and Weil, Pascal},
  title =	{{The Quantifier Alternation Hierarchy of Synchronous Relations}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{29:1--29:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.29},
  URN =		{urn:nbn:de:0030-drops-109735},
  doi =		{10.4230/LIPIcs.MFCS.2019.29},
  annote =	{Keywords: synchronous relations, automatic relations, first-order logic, characterization, quantifier alternation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Boundedness of Conjunctive Regular Path Queries (Track B: Automata, Logic, Semantics, and Theory of Programming)

Authors: Pablo Barceló, Diego Figueira, and Miguel Romero

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study the boundedness problem for unions of conjunctive regular path queries with inverses (UC2RPQs). This is the problem of, given a UC2RPQ, checking whether it is equivalent to a union of conjunctive queries (UCQ). We show the problem to be ExpSpace-complete, thus coinciding with the complexity of containment for UC2RPQs. As a corollary, when a UC2RPQ is bounded, it is equivalent to a UCQ of at most triple-exponential size, and in fact we show that this bound is optimal. We also study better behaved classes of UC2RPQs, namely acyclic UC2RPQs of bounded thickness, and strongly connected UCRPQs, whose boundedness problem is, respectively, PSpace-complete and Pi_2^P-complete. Most upper bounds exploit results on limitedness for distance automata, in particular extending the model with alternation and two-wayness, which may be of independent interest.

Cite as

Pablo Barceló, Diego Figueira, and Miguel Romero. Boundedness of Conjunctive Regular Path Queries (Track B: Automata, Logic, Semantics, and Theory of Programming). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 104:1-104:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{barcelo_et_al:LIPIcs.ICALP.2019.104,
  author =	{Barcel\'{o}, Pablo and Figueira, Diego and Romero, Miguel},
  title =	{{Boundedness of Conjunctive Regular Path Queries}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{104:1--104:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.104},
  URN =		{urn:nbn:de:0030-drops-106803},
  doi =		{10.4230/LIPIcs.ICALP.2019.104},
  annote =	{Keywords: regular path queries, boundedness, limitedness, distance automata}
}
Document
Closure Properties of Synchronized Relations

Authors: María Emilia Descotte, Diego Figueira, and Santiago Figueira

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
A standard approach to define k-ary word relations over a finite alphabet A is through k-tape finite state automata that recognize regular languages L over {1, ..., k} x A, where (i,a) is interpreted as reading letter a from tape i. Accordingly, a word w in L denotes the tuple (u_1, ..., u_k) in (A^*)^k in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of rational relations, enforcing restrictions on the reading regime from the tapes, which we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language L onto {1, ..., k}. In this way, for each regular language C subseteq {1, ..., k}^*, one obtains a class Rel({C}) of relations. Synchronous, Recognizable, and Length-preserving rational relations are all examples of classes that can be defined in this way. We study basic properties of these classes of relations, in terms of closure under intersection, complement, concatenation, Kleene star and projection. We characterize the classes with each closure property. For the binary case (k=2) this yields effective procedures.

Cite as

María Emilia Descotte, Diego Figueira, and Santiago Figueira. Closure Properties of Synchronized Relations. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{descotte_et_al:LIPIcs.STACS.2019.22,
  author =	{Descotte, Mar{\'\i}a Emilia and Figueira, Diego and Figueira, Santiago},
  title =	{{Closure Properties of Synchronized Relations}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.22},
  URN =		{urn:nbn:de:0030-drops-102614},
  doi =		{10.4230/LIPIcs.STACS.2019.22},
  annote =	{Keywords: synchronized word relations, rational, closure, characterization, intersection, complement, Kleene star, concatenation}
}
Document
Resynchronizing Classes of Word Relations

Authors: María Emilia Descotte, Diego Figueira, and Gabriele Puppis

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
A natural approach to define binary word relations over a finite alphabet A is through two-tape finite state automata that recognize regular languages over {1, 2} x A, where (i,a) is interpreted as reading letter a from tape i. Accordingly, a word w in L denotes the pair (u_1,u_2) in A^* x A^* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, which we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C subseteq {1,2}^*, one obtains a class Rel({C}) of relations. Regular, Recognizable, and length-preserving rational relations are all examples of classes that can be defined in this way. We study the problem of containment for synchronized classes of relations: given C,D subseteq {1,2}^*, is Rel({C}) subseteq Rel({D})? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1, 2} x A preserving the denoted relation whenever the inclusion holds.

Cite as

María Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing Classes of Word Relations. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 123:1-123:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{descotte_et_al:LIPIcs.ICALP.2018.123,
  author =	{Descotte, Mar{\'\i}a Emilia and Figueira, Diego and Puppis, Gabriele},
  title =	{{Resynchronizing Classes of Word Relations}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{123:1--123:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.123},
  URN =		{urn:nbn:de:0030-drops-91270},
  doi =		{10.4230/LIPIcs.ICALP.2018.123},
  annote =	{Keywords: synchronized word relations, containment, resynchronization}
}
Document
Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One

Authors: Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
Whether the reachability problem for branching vector addition systems, or equivalently the provability problem for multiplicative exponential linear logic, is decidable has been a long-standing open question. The one-dimensional case is a generalisation of the extensively studied one-counter nets, and it was recently established polynomial-time complete provided counter updates are given in unary. Our main contribution is to determine the complexity when the encoding is binary: polynomial-space complete.

Cite as

Diego Figueira, Ranko Lazic, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre. Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 119:1-119:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{figueira_et_al:LIPIcs.ICALP.2017.119,
  author =	{Figueira, Diego and Lazic, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip and Sutre, Gr\'{e}goire},
  title =	{{Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{119:1--119:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.119},
  URN =		{urn:nbn:de:0030-drops-74374},
  doi =		{10.4230/LIPIcs.ICALP.2017.119},
  annote =	{Keywords: branching vector addition systems, reachability problem}
}
  • Refine by Author
  • 14 Figueira, Diego
  • 2 Barceló, Pablo
  • 2 Descotte, María Emilia
  • 2 Morvan, Rémi
  • 2 Segoufin, Luc
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Formal languages and automata theory
  • 2 Theory of computation → Database query languages (principles)
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 2 Theory of computation → Regular languages
  • 1 Information systems → Graph-based database models
  • Show More...

  • Refine by Keyword
  • 3 containment
  • 2 XPath
  • 2 characterization
  • 2 graph databases
  • 2 synchronized word relations
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 5 2024
  • 3 2019
  • 3 2023
  • 2 2020
  • 1 2011
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail