134 Search Results for "Fischer, Johannes"


Volume

LIPIcs, Volume 308

32nd Annual European Symposium on Algorithms (ESA 2024)

ESA 2024, September 2-4, 2024, Royal Holloway, London, United Kingdom

Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman

Document
Complete Volume
LIPIcs, Volume 308, ESA 2024, Complete Volume

Authors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
LIPIcs, Volume 308, ESA 2024, Complete Volume

Cite as

32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 1-1734, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Proceedings{chan_et_al:LIPIcs.ESA.2024,
  title =	{{LIPIcs, Volume 308, ESA 2024, Complete Volume}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{1--1734},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024},
  URN =		{urn:nbn:de:0030-drops-210704},
  doi =		{10.4230/LIPIcs.ESA.2024},
  annote =	{Keywords: LIPIcs, Volume 308, ESA 2024, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 0:i-0:xxii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ESA.2024.0,
  author =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{0:i--0:xxii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.0},
  URN =		{urn:nbn:de:0030-drops-210714},
  doi =		{10.4230/LIPIcs.ESA.2024.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Recent Progress on Correlation Clustering: From Local Algorithms to Better Approximation Algorithms and Back (Invited Talk)

Authors: Vincent Cohen-Addad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Correlation clustering is a classic model for clustering problems arising in machine learning and data mining. Given a set of data elements represented as vertices of a graph and pairwise similarity represented as edges, the goal is to find a partition of the vertex set so as to minimize the total number of edges across the parts plus the total number of non-edges within the parts. Introduced in the early 2000s [Bansal et al., 2004], correlation clustering has received a large amount of attention through the years. A natural linear programming relaxation was shown to have an integrality gap of at least 2 and at most 2.5 [Ailon et al., 2008] in 2005, and in 2015 at most 2.06 [Chawla et al., 2015]. In 2021, motivated by large-scale application new structural insights allowed to derive a simple, practical algorithm that achieved an O(1)-approximation in a variety of models (Massively Parallel, Sublinear, Streaming or Differentially-private) [Vincent Cohen{-}Addad et al., 2021; Cohen-Addad et al., 2022]. These new insights turned out to be a key building block in designing better algorithms: It serves as a pre-clustering of the input graph that enables algorithm with approximation guarantees significantly better than 2 [Vincent Cohen{-}Addad et al., 2023; Vincent Cohen{-}Addad et al., 2022]. It is a key component in the new algorithm that achieves a 1.44-approximation [Nairen Cao et al., 2024] and in the new local-search based 1.84-approximation for the Massively Parallel, Sublinear, and Streaming models [Vincent Cohen{-}Addad et al., 2024]. This talk will review the above recent development and what are the main open research directions. A collection of joint works with Nairen Cao, Silvio Lattanzi, Euiwoong Lee, Shi Li, David Rasmussen Lolck, Slobodan Mitrovic, Alantha Newman, Ashkan Norouzi-Fard, Nikos Parotsidis, Marcin Pilipczuk, Jakub Tarnawski, Mikkel Thorup, Lukas Vogl, Shuyi Yan, Hanwen Zhang.

Cite as

Vincent Cohen-Addad. Recent Progress on Correlation Clustering: From Local Algorithms to Better Approximation Algorithms and Back (Invited Talk). In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cohenaddad:LIPIcs.ESA.2024.1,
  author =	{Cohen-Addad, Vincent},
  title =	{{Recent Progress on Correlation Clustering: From Local Algorithms to Better Approximation Algorithms and Back}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.1},
  URN =		{urn:nbn:de:0030-drops-210728},
  doi =		{10.4230/LIPIcs.ESA.2024.1},
  annote =	{Keywords: Approximation Algorithms, Clustering, Local Model}
}
Document
Invited Talk
Simple (Invited Talk)

Authors: Eva Rotenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Simplicity in algorithms has various aspects; interpretations and implications. One is the simplicity of the algorithmic solution itself: if an algorithm (or data structure) has a brief verbal description or can be written with few lines of pseudocode, this can lead to easier, more robust, and possibly more efficient implementations. Another aspect of simplicity relates to the proofs of correctness and efficiency of our algorithmic solutions. Here, we experience that algorithms and data structures with simpler proofs of statements about their properties can be easier to understand, easier to teach, and sometimes, easier to generalise. Simplification of proofs also receives attention in mathematics; here, too, simplification has benefits to clarity of exposition and possibility of generalisation. There are even examples of proof simplification leading to the design of new and more efficient algorithms. This talk will present examples illustrating these various aspects of simplicity. Examples where algorithmic simplification or proof simplification has led to improved performance of algorithms and data structures, in theory, in practice, or both. Finally, some of the most attractive questions in discrete mathematics and in theory of computing have a property in common: they are very simple to pose, but surprisingly, to our knowledge, not very simple to answer. The talk will include examples of such questions, which I leave as an open problem for the audience.

Cite as

Eva Rotenberg. Simple (Invited Talk). In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rotenberg:LIPIcs.ESA.2024.2,
  author =	{Rotenberg, Eva},
  title =	{{Simple}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.2},
  URN =		{urn:nbn:de:0030-drops-210739},
  doi =		{10.4230/LIPIcs.ESA.2024.2},
  annote =	{Keywords: Simplicity, graph algorithms, computational geometry, algorithmic simplification, data structures, combinatorics, proof simplification, dynamic graphs}
}
Document
From Donkeys to Kings in Tournaments

Authors: Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A tournament is an orientation of a complete graph. A vertex that can reach every other vertex within two steps is called a king. We study the complexity of finding k kings in a tournament graph. We show that the randomized query complexity of finding k ≤ 3 kings is O(n), and for the deterministic case it takes the same amount of queries (up to a constant) as finding a single king (the best known deterministic algorithm makes O(n^{3/2}) queries). On the other hand, we show that finding k ≥ 4 kings requires Ω(n²) queries, even in the randomized case. We consider the RAM model for k ≥ 4. We show an algorithm that finds k kings in time O(kn²), which is optimal for constant values of k. Alternatively, one can also find k ≥ 4 kings in time n^{ω} (the time for matrix multiplication). We provide evidence that this is optimal for large k by suggesting a fine-grained reduction from a variant of the triangle detection problem.

Cite as

Amir Abboud, Tomer Grossman, Moni Naor, and Tomer Solomon. From Donkeys to Kings in Tournaments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2024.3,
  author =	{Abboud, Amir and Grossman, Tomer and Naor, Moni and Solomon, Tomer},
  title =	{{From Donkeys to Kings in Tournaments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.3},
  URN =		{urn:nbn:de:0030-drops-210740},
  doi =		{10.4230/LIPIcs.ESA.2024.3},
  annote =	{Keywords: Tournament Graphs, Kings, Query Complexity, Fine Grained Complexity}
}
Document
Worst-Case to Expander-Case Reductions: Derandomized and Generalized

Authors: Amir Abboud and Nathan Wallheimer

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A recent paper by Abboud and Wallheimer [ITCS 2023] presents self-reductions for various fundamental graph problems, which transform worst-case instances to expanders, thus proving that the complexity remains unchanged if the input is assumed to be an expander. An interesting corollary of their self-reductions is that if some problem admits such reduction, then the popular algorithmic paradigm based on expander-decompositions is useless against it. In this paper, we improve their core gadget, which augments a graph to make it an expander while retaining its important structure. Our new core construction has the benefit of being simple to analyze and generalize while obtaining the following results: - A derandomization of the self-reductions, showing that the equivalence between worst-case and expander-case holds even for deterministic algorithms, and ruling out the use of expander-decompositions as a derandomization tool. - An extension of the results to other models of computation, such as the Fully Dynamic model and the Congested Clique model. In the former, we either improve or provide an alternative approach to some recent hardness results for dynamic expander graphs by Henzinger, Paz, and Sricharan [ESA 2022]. In addition, we continue this line of research by designing new self-reductions for more problems, such as Max-Cut and dynamic Densest Subgraph, and demonstrating that the core gadget can be utilized to lift lower bounds based on the OMv Conjecture to expanders.

Cite as

Amir Abboud and Nathan Wallheimer. Worst-Case to Expander-Case Reductions: Derandomized and Generalized. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2024.4,
  author =	{Abboud, Amir and Wallheimer, Nathan},
  title =	{{Worst-Case to Expander-Case Reductions: Derandomized and Generalized}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.4},
  URN =		{urn:nbn:de:0030-drops-210751},
  doi =		{10.4230/LIPIcs.ESA.2024.4},
  annote =	{Keywords: Fine-grained complexity, expander graphs, self-reductions, worst-case to expander-case, expander decomposition, dynamic algorithms, exact and parameterized complexity, max-cut, maximum matching, k-clique detection, densest subgraph}
}
Document
Online Sorting and Online TSP: Randomized, Stochastic, and High-Dimensional

Authors: Mikkel Abrahamsen, Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, and László Kozma

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the online sorting problem, n items are revealed one by one and have to be placed (immediately and irrevocably) into empty cells of a size-n array. The goal is to minimize the sum of absolute differences between items in consecutive cells. This natural problem was recently introduced by Aamand, Abrahamsen, Beretta, and Kleist (SODA 2023) as a tool in their study of online geometric packing problems. They showed that when the items are reals from the interval [0,1] a competitive ratio of O(√n) is achievable, and no deterministic algorithm can improve this ratio asymptotically. In this paper, we extend and generalize the study of online sorting in three directions: - randomized: we settle the open question of Aamand et al. by showing that the O(√n) competitive ratio for the online sorting of reals cannot be improved even with the use of randomness; - stochastic: we consider inputs consisting of n samples drawn uniformly at random from an interval, and give an algorithm with an improved competitive ratio of Õ(n^{1/4}). The result reveals connections between online sorting and the design of efficient hash tables; - high-dimensional: we show that Õ(√n)-competitive online sorting is possible even for items from ℝ^d, for arbitrary fixed d, in an adversarial model. This can be viewed as an online variant of the classical TSP problem where tasks (cities to visit) are revealed one by one and the salesperson assigns each task (immediately and irrevocably) to its timeslot. Along the way, we also show a tight O(log n)-competitiveness result for uniform metrics, i.e., where items are of different types and the goal is to order them so as to minimize the number of switches between consecutive items of different types.

Cite as

Mikkel Abrahamsen, Ioana O. Bercea, Lorenzo Beretta, Jonas Klausen, and László Kozma. Online Sorting and Online TSP: Randomized, Stochastic, and High-Dimensional. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 5:1-5:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.ESA.2024.5,
  author =	{Abrahamsen, Mikkel and Bercea, Ioana O. and Beretta, Lorenzo and Klausen, Jonas and Kozma, L\'{a}szl\'{o}},
  title =	{{Online Sorting and Online TSP: Randomized, Stochastic, and High-Dimensional}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.5},
  URN =		{urn:nbn:de:0030-drops-210766},
  doi =		{10.4230/LIPIcs.ESA.2024.5},
  annote =	{Keywords: sorting, online algorithm, TSP}
}
Document
Lower Envelopes of Surface Patches in 3-Space

Authors: Pankaj K. Agarwal, Esther Ezra, and Micha Sharir

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Let Σ be a collection of n surface patches, each being the graph of a partially defined semi-algebraic function of constant description complexity, and assume that any triple of them intersect in at most s = 2 points. We show that the complexity of the lower envelope of the surfaces in Σ is O(n² log^{6+ε} n), for any ε > 0. This almost settles a long-standing open problem posed by Halperin and Sharir, thirty years ago, who showed the nearly-optimal albeit weaker bound of O(n²⋅ 2^{c√{log n}}) on the complexity of the lower envelope, where c > 0 is some constant. Our approach is fairly simple and is based on hierarchical cuttings and gradations, as well as a simple charging scheme. We extend our analysis to the case s > 2, under a "favorable cross section" assumption, in which case we show that the bound on the complexity of the lower envelope is O(n² log^{11+ε} n), for any ε > 0. Incorporating these bounds with the randomized incremental construction algorithms of Boissonnat and Dobrindt, we obtain efficient constructions of lower envelopes of surface patches with the above properties, whose overall expected running time is O(n² polylog), as well as efficient data structures that support point location queries in their minimization diagrams in O(log²n) expected time.

Cite as

Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Lower Envelopes of Surface Patches in 3-Space. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ESA.2024.6,
  author =	{Agarwal, Pankaj K. and Ezra, Esther and Sharir, Micha},
  title =	{{Lower Envelopes of Surface Patches in 3-Space}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.6},
  URN =		{urn:nbn:de:0030-drops-210772},
  doi =		{10.4230/LIPIcs.ESA.2024.6},
  annote =	{Keywords: Hierarchical cuttings, surface patches in 3-space, lower envelopes, charging scheme, gradation}
}
Document
Segment Proximity Graphs and Nearest Neighbor Queries Amid Disjoint Segments

Authors: Pankaj K. Agarwal, Haim Kaplan, Matthew J. Katz, and Micha Sharir

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in {ℝ}². Let S be a set of n pairwise-disjoint segments in {ℝ}², and let r > 0 be a parameter. We define the segment proximity graph of S to be G_r(S) := (S,E), where E = {(e₁,e₂) ∣ dist(e₁,e₂) ≤ r} and dist (e₁,e₂) = min_{(p,q) ∈ e₁× e₂} ‖p-q‖ is the Euclidean distance between e₁ and e₂. We define the weight of an edge (e₁,e₂) ∈ E to be dist(e₁,e₂). We first present a simple grid-based O(nlog² n)-time algorithm for computing a BFS tree of G_r(S). We apply it to obtain an O^*(n^{6/5}) + O(nlog²nlogΔ)-time algorithm for the so-called reverse shortest path problem, in which we want to find the smallest value r^* for which G_{r^*}(S) contains a path of some specified length between two designated start and target segments (where the O^*(⋅) notation hides polylogarithmic factors). Here Δ = max_{e ≠ e' ∈ S} dist(e,e')/min_{e ≠ e' ∈ S} dist(e,e') is the spread of S. Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S, the segment of S closest to e can be computed in O(log⁵ n) amortized time. The amortized update time is also O(log⁵ n). We note that if the segments in S∪Q are allowed to intersect then the known lower bounds on halfplane range searching suggest that a sequence of n updates and queries may take at least close to Ω(n^{4/3}) time. One thus has to strongly rely on the non-intersecting property of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each. Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that a DFS tree (or forest) of G_r(S) can be computed in O^*(n) time. We also obtain an O^*(n)-time algorithm for constructing a minimum spanning tree of G_r(S). Finally, we present an O^*(n^{4/3})-time algorithm for computing a single-source shortest-path tree in G_r(S). This is the only result that does not exploit the disjointness of the input segments.

Cite as

Pankaj K. Agarwal, Haim Kaplan, Matthew J. Katz, and Micha Sharir. Segment Proximity Graphs and Nearest Neighbor Queries Amid Disjoint Segments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ESA.2024.7,
  author =	{Agarwal, Pankaj K. and Kaplan, Haim and Katz, Matthew J. and Sharir, Micha},
  title =	{{Segment Proximity Graphs and Nearest Neighbor Queries Amid Disjoint Segments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.7},
  URN =		{urn:nbn:de:0030-drops-210782},
  doi =		{10.4230/LIPIcs.ESA.2024.7},
  annote =	{Keywords: segment proximity graphs, nearest neighbor searching, dynamic data structures, BFS, DFS, unit-disk graphs}
}
Document
Interval Selection in Sliding Windows

Authors: Cezar-Mihail Alexandru and Christian Konrad

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We initiate the study of the Interval Selection problem in the (streaming) sliding window model of computation. In this problem, an algorithm receives a potentially infinite stream of intervals on the line, and the objective is to maintain at every moment an approximation to a largest possible subset of disjoint intervals among the L most recent intervals, for some integer L. We give the following results: 1) In the unit-length intervals case, we give a 2-approximation sliding window algorithm with space Õ(|OPT|), and we show that any sliding window algorithm that computes a (2-ε)-approximation requires space Ω(L), for any ε > 0. 2) In the arbitrary-length case, we give a (11/3+ε)-approximation sliding window algorithm with space Õ(|OPT|), for any constant ε > 0, which constitutes our main result. We also show that space Ω(L) is needed for algorithms that compute a (2.5-ε)-approximation, for any ε > 0. Our main technical contribution is an improvement over the smooth histogram technique, which consists of running independent copies of a traditional streaming algorithm with different start times. By employing the one-pass 2-approximation streaming algorithm by Cabello and Pérez-Lantero [Theor. Comput. Sci. '17] for Interval Selection on arbitrary-length intervals as the underlying algorithm, the smooth histogram technique immediately yields a (4+ε)-approximation in this setting. Our improvement is obtained by forwarding the structure of the intervals identified in a run to the subsequent run, which constrains the shape of an optimal solution and allows us to target optimal intervals differently.

Cite as

Cezar-Mihail Alexandru and Christian Konrad. Interval Selection in Sliding Windows. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alexandru_et_al:LIPIcs.ESA.2024.8,
  author =	{Alexandru, Cezar-Mihail and Konrad, Christian},
  title =	{{Interval Selection in Sliding Windows}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.8},
  URN =		{urn:nbn:de:0030-drops-210795},
  doi =		{10.4230/LIPIcs.ESA.2024.8},
  annote =	{Keywords: Sliding window algorithms, Streaming algorithms, Interval selection}
}
Document
On Connections Between k-Coloring and Euclidean k-Means

Authors: Enver Aman, Karthik C. S., and Sharath Punna

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Euclidean k-means problems we are given as input a set of n points in ℝ^d and the goal is to find a set of k points C ⊆ ℝ^d, so as to minimize the sum of the squared Euclidean distances from each point in P to its closest center in C. In this paper, we formally explore connections between the k-coloring problem on graphs and the Euclidean k-means problem. Our results are as follows: - For all k ≥ 3, we provide a simple reduction from the k-coloring problem on regular graphs to the Euclidean k-means problem. Moreover, our technique extends to enable a reduction from a structured max-cut problem (which may be considered as a partial 2-coloring problem) to the Euclidean 2-means problem. Thus, we have a simple and alternate proof of the NP-hardness of Euclidean 2-means problem. - In the other direction, we mimic the O(1.7297ⁿ) time algorithm of Williams [TCS'05] for the max-cut of problem on n vertices to obtain an algorithm for the Euclidean 2-means problem with the same runtime, improving on the naive exhaustive search running in 2ⁿ⋅ poly(n,d) time. - We prove similar results and connections as above for the Euclidean k-min-sum problem.

Cite as

Enver Aman, Karthik C. S., and Sharath Punna. On Connections Between k-Coloring and Euclidean k-Means. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aman_et_al:LIPIcs.ESA.2024.9,
  author =	{Aman, Enver and Karthik C. S. and Punna, Sharath},
  title =	{{On Connections Between k-Coloring and Euclidean k-Means}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.9},
  URN =		{urn:nbn:de:0030-drops-210808},
  doi =		{10.4230/LIPIcs.ESA.2024.9},
  annote =	{Keywords: k-means, k-minsum, Euclidean space, fine-grained complexity}
}
Document
Sparse Outerstring Graphs Have Logarithmic Treewidth

Authors: Shinwoo An, Eunjin Oh, and Jie Xue

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the boundary of the disk. We show that an outerstring graph with n vertices has treewidth O(αlog n), where α denotes the arboricity of the graph, with an almost matching lower bound of Ω(α log (n/α)). As a corollary, we show that a t-biclique-free outerstring graph has treewidth O(t(log t)log n). This leads to polynomial-time algorithms for most of the central NP-complete problems such as Independent Set, Vertex Cover, Dominating Set, Feedback Vertex Set, Coloring for sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and approximation) algorithms for various NP-complete problems such as Vertex Cover, Feedback Vertex Set and Cycle Packing for (not necessarily sparse) outerstring graphs.

Cite as

Shinwoo An, Eunjin Oh, and Jie Xue. Sparse Outerstring Graphs Have Logarithmic Treewidth. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{an_et_al:LIPIcs.ESA.2024.10,
  author =	{An, Shinwoo and Oh, Eunjin and Xue, Jie},
  title =	{{Sparse Outerstring Graphs Have Logarithmic Treewidth}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.10},
  URN =		{urn:nbn:de:0030-drops-210816},
  doi =		{10.4230/LIPIcs.ESA.2024.10},
  annote =	{Keywords: Outerstring graphs, geometric intersection graphs, treewidth}
}
Document
How to Reduce Temporal Cliques to Find Sparse Spanners

Authors: Sebastian Angrick, Ben Bals, Tobias Friedrich, Hans Gawendowicz, Niko Hastrich, Nicolas Klodt, Pascal Lenzner, Jonas Schmidt, George Skretas, and Armin Wells

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Many real-world networks, such as transportation or trade networks, are dynamic in the sense that the edge-set may change over time, but these changes are known in advance. This behavior is captured by the temporal graphs model, which has recently become a trending topic in theoretical computer science. A core open problem in the field is to prove the existence of linear-size temporal spanners in temporal cliques, i.e., sparse subgraphs of complete temporal graphs that ensure all-pairs reachability via temporal paths. So far, the best known result is the existence of temporal spanners with 𝒪(nlog n) many edges. We present significant progress towards proving whether linear-size temporal spanners exist in all temporal cliques. We adapt techniques used in previous works and heavily expand and generalize them. This allows us to show that the existence of a linear spanner in cliques and bi-cliques is equivalent and using this, we provide a simpler and more intuitive proof of the 𝒪(nlog n) bound by giving an efficient algorithm for finding linearithmic spanners. Moreover, we use our novel and efficiently computable approach to show that a large class of temporal cliques, called edge-pivotable graphs, admit linear-size temporal spanners. To contrast this, we investigate other classes of temporal cliques that do not belong to the class of edge-pivotable graphs. We introduce two such graph classes and we develop novel algorithmic techniques for establishing the existence of linear temporal spanners in these graph classes as well.

Cite as

Sebastian Angrick, Ben Bals, Tobias Friedrich, Hans Gawendowicz, Niko Hastrich, Nicolas Klodt, Pascal Lenzner, Jonas Schmidt, George Skretas, and Armin Wells. How to Reduce Temporal Cliques to Find Sparse Spanners. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{angrick_et_al:LIPIcs.ESA.2024.11,
  author =	{Angrick, Sebastian and Bals, Ben and Friedrich, Tobias and Gawendowicz, Hans and Hastrich, Niko and Klodt, Nicolas and Lenzner, Pascal and Schmidt, Jonas and Skretas, George and Wells, Armin},
  title =	{{How to Reduce Temporal Cliques to Find Sparse Spanners}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.11},
  URN =		{urn:nbn:de:0030-drops-210822},
  doi =		{10.4230/LIPIcs.ESA.2024.11},
  annote =	{Keywords: Temporal Graphs, temporal Clique, temporal Spanner, Reachability, Graph Connectivity, Graph Sparsification}
}
Document
Outlier Robust Multivariate Polynomial Regression

Authors: Vipul Arora, Arnab Bhattacharyya, Mathews Boban, Venkatesan Guruswami, and Esty Kelman

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the problem of robust multivariate polynomial regression: let p: ℝⁿ → ℝ be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (𝐱_i,y_i) ∈ [-1,1]ⁿ × ℝ that are noisy versions of (𝐱_i,p(𝐱_i)). More precisely, each 𝐱_i is sampled independently from some distribution χ on [-1,1]ⁿ, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most ρ < 1/2, and otherwise satisfies |y_i-p(𝐱_i)| ≤ σ. The goal is to output a polynomial p̂, of degree at most d in each variable, within an 𝓁_∞-distance of at most O(σ) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n = 1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(dⁿlog d), where the hidden constant depends on n, if χ is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(σ), and the run-time depends on log(1/σ). In the setting where each 𝐱_i and y_i are known up to N bits of precision, the run-time’s dependence on N is linear. We also show that our sample complexities are optimal in terms of dⁿ. Furthermore, we show that it is possible to have the run-time be independent of 1/σ, at the cost of a higher sample complexity.

Cite as

Vipul Arora, Arnab Bhattacharyya, Mathews Boban, Venkatesan Guruswami, and Esty Kelman. Outlier Robust Multivariate Polynomial Regression. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arora_et_al:LIPIcs.ESA.2024.12,
  author =	{Arora, Vipul and Bhattacharyya, Arnab and Boban, Mathews and Guruswami, Venkatesan and Kelman, Esty},
  title =	{{Outlier Robust Multivariate Polynomial Regression}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.12},
  URN =		{urn:nbn:de:0030-drops-210830},
  doi =		{10.4230/LIPIcs.ESA.2024.12},
  annote =	{Keywords: Robust Statistics, Polynomial Regression, Sample Efficient Learning}
}
  • Refine by Author
  • 16 Fischer, Johannes
  • 5 Dinklage, Patrick
  • 5 Ellert, Jonas
  • 4 Kurpicz, Florian
  • 3 Bertram, Nico
  • Show More...

  • Refine by Classification
  • 27 Theory of computation → Design and analysis of algorithms
  • 17 Theory of computation → Graph algorithms analysis
  • 16 Theory of computation → Computational geometry
  • 12 Theory of computation → Parameterized complexity and exact algorithms
  • 10 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 6 Approximation Algorithms
  • 5 graph algorithms
  • 4 algorithm engineering
  • 4 data structures
  • 4 dynamic data structures
  • Show More...

  • Refine by Type
  • 133 document
  • 1 volume

  • Refine by Publication Year
  • 119 2024
  • 4 2021
  • 3 2020
  • 2 2017
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail