168 Search Results for "Flocchini, Paola"


Volume

LIPIcs, Volume 132

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

ICALP 2019, July 9-12, 2019, Patras, Greece

Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi

Document
Proxying Betweenness Centrality Rankings in Temporal Networks

Authors: Ruben Becker, Pierluigi Crescenzi, Antonio Cruciani, and Bojana Kodric

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
Identifying influential nodes in a network is arguably one of the most important tasks in graph mining and network analysis. A large variety of centrality measures, all aiming at correctly quantifying a node’s importance in the network, have been formulated in the literature. One of the most cited ones is the betweenness centrality, formally introduced by Freeman (Sociometry, 1977). On the other hand, researchers have recently been very interested in capturing the dynamic nature of real-world networks by studying temporal graphs, rather than static ones. Clearly, centrality measures, including the betweenness centrality, have also been extended to temporal graphs. Buß et al. (KDD, 2020) gave algorithms to compute various notions of temporal betweenness centrality, including the perhaps most natural one - shortest temporal betweenness. Their algorithm computes centrality values of all nodes in time O(n³ T²), where n is the size of the network and T is the total number of time steps. For real-world networks, which easily contain tens of thousands of nodes, this complexity becomes prohibitive. Thus, it is reasonable to consider proxies for shortest temporal betweenness rankings that are more efficiently computed, and, therefore, allow for measuring the relative importance of nodes in very large temporal graphs. In this paper, we compare several such proxies on a diverse set of real-world networks. These proxies can be divided into global and local proxies. The considered global proxies include the exact algorithm for static betweenness (computed on the underlying graph), prefix foremost temporal betweenness of Buß et al., which is more efficiently computable than shortest temporal betweenness, and the recently introduced approximation approach of Santoro and Sarpe (WWW, 2022). As all of these global proxies are still expensive to compute on very large networks, we also turn to more efficiently computable local proxies. Here, we consider temporal versions of the ego-betweenness in the sense of Everett and Borgatti (Social Networks, 2005), standard degree notions, and a novel temporal degree notion termed the pass-through degree, that we introduce in this paper and which we consider to be one of our main contributions. We show that the pass-through degree, which measures the number of pairs of neighbors of a node that are temporally connected through it, can be computed in nearly linear time for all nodes in the network and we experimentally observe that it is surprisingly competitive as a proxy for shortest temporal betweenness.

Cite as

Ruben Becker, Pierluigi Crescenzi, Antonio Cruciani, and Bojana Kodric. Proxying Betweenness Centrality Rankings in Temporal Networks. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 6:1-6:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.SEA.2023.6,
  author =	{Becker, Ruben and Crescenzi, Pierluigi and Cruciani, Antonio and Kodric, Bojana},
  title =	{{Proxying Betweenness Centrality Rankings in Temporal Networks}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.6},
  URN =		{urn:nbn:de:0030-drops-183568},
  doi =		{10.4230/LIPIcs.SEA.2023.6},
  annote =	{Keywords: node centrality, betweenness, temporal graphs, graph mining}
}
Document
A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

Authors: Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann, and Friedhelm Meyer auf der Heide

Published in: LIPIcs, Volume 253, 26th International Conference on Principles of Distributed Systems (OPODIS 2022)


Abstract
We consider a swarm of n robots in a d-dimensional Euclidean space. The robots are oblivious (no persistent memory), disoriented (no common coordinate system/compass), and have limited visibility (observe other robots up to a constant distance). The basic formation task Gathering requires that all robots reach the same, not predefined position. In the related NearGathering task, they must reach distinct positions in close proximity such that every robot sees the entire swarm. In the considered setting, Gathering can be solved in 𝒪(n + Δ²) synchronous rounds both in two and three dimensions, where Δ denotes the initial maximal distance of two robots [Hideki Ando et al., 1999; Michael Braun et al., 2020; Bastian Degener et al., 2011]. In this work, we formalize a key property of efficient Gathering protocols and use it to define λ-contracting protocols. Any such protocol gathers n robots in the d-dimensional space in 𝒪(Δ²) synchronous rounds, for d ≥ 2. For d = 1, any λ-contracting protocol gathers in optimal time 𝒪(Δ). Moreover, we prove a corresponding lower bound stating that any protocol in which robots move to target points inside the local convex hulls of their neighborhoods - λ-contracting protocols have this property - requires Ω(Δ²) rounds to gather all robots (d > 1). Among others, we prove that the d-dimensional generalization of the GTC-protocol [Hideki Ando et al., 1999] is λ-contracting. Remarkably, our improved and generalized runtime bound is independent of n and d. We also introduce an approach to make any λ-contracting protocol collision-free (robots never occupy the same position) to solve NearGathering. The resulting protocols maintain the runtime of Θ (Δ²) and work even in the semi-synchronous model. This yields the first NearGathering protocols for disoriented robots and the first proven runtime bound. In particular, combined with results from [Paola Flocchini et al., 2017] for robots with global visibility, we obtain the first protocol to solve Uniform Circle Formation (arrange the robots on the vertices of a regular n-gon) for oblivious, disoriented robots with limited visibility.

Cite as

Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann, and Friedhelm Meyer auf der Heide. A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility. In 26th International Conference on Principles of Distributed Systems (OPODIS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 253, pp. 15:1-15:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{castenow_et_al:LIPIcs.OPODIS.2022.15,
  author =	{Castenow, Jannik and Harbig, Jonas and Jung, Daniel and Kling, Peter and Knollmann, Till and Meyer auf der Heide, Friedhelm},
  title =	{{A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility}},
  booktitle =	{26th International Conference on Principles of Distributed Systems (OPODIS 2022)},
  pages =	{15:1--15:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-265-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{253},
  editor =	{Hillel, Eshcar and Palmieri, Roberto and Rivi\`{e}re, Etienne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2022.15},
  URN =		{urn:nbn:de:0030-drops-176350},
  doi =		{10.4230/LIPIcs.OPODIS.2022.15},
  annote =	{Keywords: mobile robots, gathering, limited visibility, runtime, collision avoidance, near-gathering}
}
Document
Swarms of Mobile Robots: Towards Versatility with Safety

Authors: Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We present Pactole, a formal framework to design and prove the correctness of protocols (or the impossibility of their existence) that target mobile robotic swarms. Unlike previous approaches, our methodology unifies in a single formalism the execution model, the problem specification, the protocol, and its proof of correctness. The Pactole framework makes use of the Coq proof assistant, and is specially targeted at protocol designers and problem specifiers, so that a common unambiguous language is used from the very early stages of protocol development. We stress the underlying framework design principles to enable high expressivity and modularity, and provide concrete examples about how the Pactole framework can be used to tackle actual problems, some previously addressed by the Distributed Computing community, but also new problems, while being certified correct.

Cite as

Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Swarms of Mobile Robots: Towards Versatility with Safety. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 02:1-02:36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{courtieu_et_al:LITES.8.2.2,
  author =	{Courtieu, Pierre and Rieg, Lionel and Tixeuil, S\'{e}bastien and Urbain, Xavier},
  title =	{{Swarms of Mobile Robots: Towards Versatility with Safety}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{02:1--02:36},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.2},
  doi =		{10.4230/LITES.8.2.2},
  annote =	{Keywords: distributed algorithm, mobile autonomous robots, formal proof}
}
Document
The Canonical Amoebot Model: Algorithms and Concurrency Control

Authors: Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler

Published in: LIPIcs, Volume 209, 35th International Symposium on Distributed Computing (DISC 2021)


Abstract
The amoebot model abstracts active programmable matter as a collection of simple computational elements called amoebots that interact locally to collectively achieve tasks of coordination and movement. Since its introduction (SPAA 2014), a growing body of literature has adapted its assumptions for a variety of problems; however, without a standardized hierarchy of assumptions, precise systematic comparison of results under the amoebot model is difficult. We propose the canonical amoebot model, an updated formalization that distinguishes between core model features and families of assumption variants. A key improvement addressed by the canonical amoebot model is concurrency. Much of the existing literature implicitly assumes amoebot actions are isolated and reliable, reducing analysis to the sequential setting where at most one amoebot is active at a time. However, real programmable matter systems are concurrent. The canonical amoebot model formalizes all amoebot communication as message passing, leveraging adversarial activation models of concurrent executions. Under this granular treatment of time, we take two complementary approaches to concurrent algorithm design. Using hexagon formation as a case study, we first establish a set of sufficient conditions for algorithm correctness under any concurrent execution, embedding concurrency control directly in algorithm design. We then present a concurrency control framework that uses locks to convert amoebot algorithms that terminate in the sequential setting and satisfy certain conventions into algorithms that exhibit equivalent behavior in the concurrent setting. Together, the canonical amoebot model and these complementary approaches to concurrent algorithm design open new directions for distributed computing research on programmable matter.

Cite as

Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot Model: Algorithms and Concurrency Control. In 35th International Symposium on Distributed Computing (DISC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 209, pp. 20:1-20:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{daymude_et_al:LIPIcs.DISC.2021.20,
  author =	{Daymude, Joshua J. and Richa, Andr\'{e}a W. and Scheideler, Christian},
  title =	{{The Canonical Amoebot Model: Algorithms and Concurrency Control}},
  booktitle =	{35th International Symposium on Distributed Computing (DISC 2021)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-210-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{209},
  editor =	{Gilbert, Seth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.20},
  URN =		{urn:nbn:de:0030-drops-148227},
  doi =		{10.4230/LIPIcs.DISC.2021.20},
  annote =	{Keywords: Programmable matter, self-organization, distributed algorithms, concurrency}
}
Document
Tight Bounds on Distributed Exploration of Temporal Graphs

Authors: Tsuyoshi Gotoh, Paola Flocchini, Toshimitsu Masuzawa, and Nicola Santoro

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
Temporal graphs (or evolving graphs) are time-varying graphs where time is assumed to be discrete. In this paper, we consider for the first time the problem of exploring temporal graphs of arbitrary unknown topology. We study the feasibility of exploration, under both the Fsync and Ssync schedulers, focusing on the number of agents necessary and sufficient to explore such graphs. We first consider the minimal (i.e., less restrictive) assumption on the dynamics of the graph under which exploration is still feasible: temporal connectivity. Let ℋ be the class of temporally connected graphs; we show that for any temporal graph ? ∈ ℋ the number of agents sufficient to perform exploration is related to the number of its transient edges, a parameter η(?) we call evanescence of the graph. More precisely, any ? ∈ ℋ can be explored by a team of k ≥ 2 η(?) +1 agents; this bound is tight as we prove there are ? ∈ ℋ that cannot be explored by 2 η(?) agents. We then turn our attention to the well-known stronger assumption on the dynamics of the graph, called 1-interval connectivity: the graph is connected at any time step. Let ? ⊂ ℋ be the class of these always-connected temporal graphs. For this class, we prove the existence of a difference between Fsync and Ssync when there is a bound ? on the number of edges missing at each time. In fact, we show a tight bound of 2 ? +1 on the number of agents necessary and sufficient in Ssync, and a smaller tight bound of 2 ? in Fsync. As a corollary, we re-establish two recently published bounds for 1-interval connected rings.

Cite as

Tsuyoshi Gotoh, Paola Flocchini, Toshimitsu Masuzawa, and Nicola Santoro. Tight Bounds on Distributed Exploration of Temporal Graphs. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 22:1-22:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gotoh_et_al:LIPIcs.OPODIS.2019.22,
  author =	{Gotoh, Tsuyoshi and Flocchini, Paola and Masuzawa, Toshimitsu and Santoro, Nicola},
  title =	{{Tight Bounds on Distributed Exploration of Temporal Graphs}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.22},
  URN =		{urn:nbn:de:0030-drops-118082},
  doi =		{10.4230/LIPIcs.OPODIS.2019.22},
  annote =	{Keywords: Distributed algorithm, Mobile agents, Exploration of dynamic networks, Arbitrary footprint}
}
Document
Oblivious Permutations on the Plane

Authors: Shantanu Das, Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
We consider a distributed system of n identical mobile robots operating in the two dimensional Euclidian plane. As in the previous studies, we consider the robots to be anonymous, oblivious, dis-oriented, and without any communication capabilities, operating based on the Look-Compute-Move model where the next location of a robot depends only on its view of the current configuration. Even in this seemingly weak model, most formation problems which require constructing specific configurations, can be solved quite easily when the robots are fully synchronized with each other. In this paper we introduce and study a new class of problems which, unlike the studied formation problems, cannot always be solved even in the fully synchronous model with atomic and rigid moves. This class of problems requires the robots to permute their locations in the plane. In particular, we are interested in implementing two special types of permutations - permutations without any fixed points and permutations of order n. The former (called Move-All) requires each robot to visit at least two of the initial locations, while the latter (called Visit-All) requires every robot to visit each of the initial locations in a periodic manner. We provide a characterization of the solvability of these problems, showing the main challenges in solving this class of problems for mobile robots. We also provide algorithms for the feasible cases, in particular distinguishing between one-step algorithms (where each configuration must be a permutation of the original configuration) and multi-step algorithms (which allow intermediate configurations). These results open a new research direction in mobile distributed robotics which has not been investigated before.

Cite as

Shantanu Das, Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita. Oblivious Permutations on the Plane. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 24:1-24:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.OPODIS.2019.24,
  author =	{Das, Shantanu and Di Luna, Giuseppe A. and Flocchini, Paola and Santoro, Nicola and Viglietta, Giovanni and Yamashita, Masafumi},
  title =	{{Oblivious Permutations on the Plane}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.24},
  URN =		{urn:nbn:de:0030-drops-118103},
  doi =		{10.4230/LIPIcs.OPODIS.2019.24},
  annote =	{Keywords: Distributed Algorithms, Mobile Robots, Fully synchronous, Oblivious, Permutations, Chirality, Sequence of configurations}
}
Document
On Memory, Communication, and Synchronous Schedulers When Moving and Computing

Authors: Paola Flocchini, Nicola Santoro, and Koichi Wada

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
We investigate the computational power of distributed systems whose autonomous computational entities, called robots, move and operate in the 2-dimensional Euclidean plane in synchronous Look-Compute-Move (LCM) cycles. Specifically, we focus on the power of persistent memory and that of explicit communication, and on their computational relationship. In the most common model, OBLOT, the robots are oblivious (no persistent memory) and silent (no explicit means of communication). In contrast, in the LUMI model, each robot is equipped with a constant-sized persistent memory (called light), visible to all the robots; hence, these luminous robots are capable in each cycle of both remembering and communicating. Since luminous robots are computationally more powerful than the standard oblivious one, immediate important questions are about the individual computational power of persistent memory and of explicit communication. In particular, which of the two capabilities, memory or communication, is more important? in other words, is it better to remember or to communicate ? In this paper we address these questions, focusing on two sub-models of LUMI: FSTA, where the robots have a constant-size persistent memory but are silent; and FCOM, where the robots can communicate a constant number of bits but are oblivious. We analyze the relationship among all these models and provide a complete exhaustive map of their computational relationship. Among other things, we prove that communication is more powerful than persistent memory under the fully synchronous scheduler Fsynch, while they are incomparable under the semi-synchronous scheduler Ssynch.

Cite as

Paola Flocchini, Nicola Santoro, and Koichi Wada. On Memory, Communication, and Synchronous Schedulers When Moving and Computing. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 25:1-25:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{flocchini_et_al:LIPIcs.OPODIS.2019.25,
  author =	{Flocchini, Paola and Santoro, Nicola and Wada, Koichi},
  title =	{{On Memory, Communication, and Synchronous Schedulers When Moving and Computing}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.25},
  URN =		{urn:nbn:de:0030-drops-118114},
  doi =		{10.4230/LIPIcs.OPODIS.2019.25},
  annote =	{Keywords: Look-Compute-Move, Oblivious mobile robots, Robots with lights, Memory versus Communication, Moving and Computing}
}
Document
Gathering and Election by Mobile Robots in a Continuous Cycle

Authors: Paola Flocchini, Ryan Killick, Evangelos Kranakis, Nicola Santoro, and Masafumi Yamashita

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Consider a set of n mobile computational entities, called robots, located and operating on a continuous cycle C (e.g., the perimeter of a closed region of R^2) of arbitrary length l. The robots are identical, can only see their current location, have no location awareness, and cannot communicate at a distance. In this weak setting, we study the classical problems of gathering (GATHER), requiring all robots to meet at a same location; and election (ELECT), requiring all robots to agree on a single one as the "leader". We investigate how to solve the problems depending on the amount of knowledge (exact, upper bound, none) the robots have about their number n and about the length of the cycle l. Cost of the algorithms is analyzed with respect to time and number of random bits. We establish a variety of new results specific to the continuous cycle - a geometric domain never explored before for GATHER and ELECT in a mobile robot setting; compare Monte Carlo and Las Vegas algorithms; and obtain several optimal bounds.

Cite as

Paola Flocchini, Ryan Killick, Evangelos Kranakis, Nicola Santoro, and Masafumi Yamashita. Gathering and Election by Mobile Robots in a Continuous Cycle. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 8:1-8:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{flocchini_et_al:LIPIcs.ISAAC.2019.8,
  author =	{Flocchini, Paola and Killick, Ryan and Kranakis, Evangelos and Santoro, Nicola and Yamashita, Masafumi},
  title =	{{Gathering and Election by Mobile Robots in a Continuous Cycle}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.8},
  URN =		{urn:nbn:de:0030-drops-115044},
  doi =		{10.4230/LIPIcs.ISAAC.2019.8},
  annote =	{Keywords: Cycle, Election, Gathering, Las Vegas, Monte Carlo, Randomized Algorithm}
}
Document
Complete Volume
LIPIcs, Volume 132, ICALP'19, Complete Volume

Authors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
LIPIcs, Volume 132, ICALP'19, Complete Volume

Cite as

Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi. LIPIcs, Volume 132, ICALP'19, Complete Volume. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Proceedings{baier_et_al:LIPIcs.ICALP.2019,
  title =	{{LIPIcs, Volume 132, ICALP'19, Complete Volume}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019},
  URN =		{urn:nbn:de:0030-drops-108644},
  doi =		{10.4230/LIPIcs.ICALP.2019},
  annote =	{Keywords: Theory of computation}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi. Front Matter, Table of Contents, Preface, Conference Organization. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 0:i-0:xxxviii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.ICALP.2019.0,
  author =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{0:i--0:xxxviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.0},
  URN =		{urn:nbn:de:0030-drops-105765},
  doi =		{10.4230/LIPIcs.ICALP.2019.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Auction Design under Interdependent Values (Invited Talk)

Authors: Michal Feldman

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study combinatorial auctions with interdependent valuations. In such settings, every agent has a private signal, and every agent has a valuation function that depends on the private signals of all the agents. Interdependent valuations capture settings where agents lack information to determine their own valuations. Examples include auctions for artwork or oil drilling rights. For single item auctions and assume some restrictive conditions (the so-called single-crossing condition), full welfare can be achieved. However, in general, there are strong impossibility results on welfare maximization in the interdependent setting. This is in contrast to settings where agents are aware of their own valuations, where the optimal welfare can always be obtained by an incentive compatible mechanism. Motivated by these impossibility results, we study welfare maximization for interdependent valuations through the lens of approximation. We introduce two valuation properties that enable positive results. The first is a relaxed, parameterized version of single crossing; the second is a submodularity condition over the signals. We obtain a host of approximation guarantees under these two notions for various scenarios. Related publications: [Alon Eden et al., 2018; Alon Eden et al., 2019]

Cite as

Michal Feldman. Auction Design under Interdependent Values (Invited Talk). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, p. 1:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{feldman:LIPIcs.ICALP.2019.1,
  author =	{Feldman, Michal},
  title =	{{Auction Design under Interdependent Values}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.1},
  URN =		{urn:nbn:de:0030-drops-105778},
  doi =		{10.4230/LIPIcs.ICALP.2019.1},
  annote =	{Keywords: Combinatorial auctions, Interdependent values, Welfare approximation}
}
Document
Invited Talk
Symmetry and Similarity (Invited Talk)

Authors: Martin Grohe

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Deciding if two graphs are isomorphic, or equivalently, computing the symmetries of a graph, is a fundamental algorithmic problem. It has many interesting applications, and it is one of the few natural problems in the class NP whose complexity status is still unresolved. Three years ago, Babai (STOC 2016) gave a quasi-polynomial time isomorphism algorithm. Despite of this breakthrough, the question for a polynomial algorithm remains wide open. Related to the isomorphism problem is the problem of determining the similarity between graphs. Variations of this problems are known as robust graph isomorphism or graph matching (the latter in the machine learning and computer vision literature). This problem is significantly harder than the isomorphism problem, both from a complexity theoretical and from a practical point of view, but for many applications it is the more relevant problem. My talk will be a survey of recent progress on the isomorphism and on the similarity problem. I will focus on generic algorithmic strategies (as opposed to algorithms tailored towards specific graph classes) that have proved to be useful and interesting in various context, both theoretical and practical.

Cite as

Martin Grohe. Symmetry and Similarity (Invited Talk). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, p. 2:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{grohe:LIPIcs.ICALP.2019.2,
  author =	{Grohe, Martin},
  title =	{{Symmetry and Similarity}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.2},
  URN =		{urn:nbn:de:0030-drops-105787},
  doi =		{10.4230/LIPIcs.ICALP.2019.2},
  annote =	{Keywords: Graph Isomorphism, Graph Similarity, Graph Matching}
}
Document
Invited Talk
Approximately Good and Modern Matchings (Invited Talk)

Authors: Ola Svensson

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The matching problem is one of our favorite benchmark problems. Work on it has contributed to the development of many core concepts of computer science, including the equation of efficiency with polynomial time computation in the groundbreaking work by Edmonds in 1965. However, half a century later, we still do not have full understanding of the complexity of the matching problem in several models of computation such as parallel, online, and streaming algorithms. In this talk we survey some of the major challenges and report some recent progress.

Cite as

Ola Svensson. Approximately Good and Modern Matchings (Invited Talk). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, p. 3:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{svensson:LIPIcs.ICALP.2019.3,
  author =	{Svensson, Ola},
  title =	{{Approximately Good and Modern Matchings}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.3},
  URN =		{urn:nbn:de:0030-drops-105797},
  doi =		{10.4230/LIPIcs.ICALP.2019.3},
  annote =	{Keywords: Algorithms, Matchings, Computational Complexity}
}
Document
Invited Talk
Automata Learning and Galois Connections (Invited Talk)

Authors: Frits Vaandrager

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Automata learning is emerging as an effective technique for obtaining state machine models of software and hardware systems. I will present an overview of recent work in which we used active automata learning to find standard violations and security vulnerabilities in implementations of network protocols such as TCP and SSH. Also, I will discuss applications of automata learning to support refactoring of legacy control software and identifying job patterns in manufacturing systems. As a guiding theme in my presentation, I will show how Galois connections (adjunctions) help us to scale the application of learning algorithms to practical problems.

Cite as

Frits Vaandrager. Automata Learning and Galois Connections (Invited Talk). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, p. 4:1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{vaandrager:LIPIcs.ICALP.2019.4,
  author =	{Vaandrager, Frits},
  title =	{{Automata Learning and Galois Connections}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{4:1--4:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.4},
  URN =		{urn:nbn:de:0030-drops-105800},
  doi =		{10.4230/LIPIcs.ICALP.2019.4},
  annote =	{Keywords: Automaton Learning, Model Learning, Protocol Verification, Applications of Automata Learning, Galois Connections}
}
  • Refine by Author
  • 11 Flocchini, Paola
  • 9 Santoro, Nicola
  • 6 Di Luna, Giuseppe A.
  • 6 Viglietta, Giovanni
  • 4 Lokshtanov, Daniel
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Design and analysis of algorithms
  • 11 Theory of computation → Graph algorithms analysis
  • 10 Mathematics of computing → Graph algorithms
  • 10 Theory of computation → Approximation algorithms analysis
  • 10 Theory of computation → Distributed algorithms
  • Show More...

  • Refine by Keyword
  • 9 approximation algorithms
  • 5 fine-grained complexity
  • 5 lower bounds
  • 4 distributed algorithms
  • 4 graph algorithms
  • Show More...

  • Refine by Type
  • 167 document
  • 1 volume

  • Refine by Publication Year
  • 155 2019
  • 3 2020
  • 2 2016
  • 2 2017
  • 2 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail