Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Gergely Ambrus, Martin Balko, Nóra Frankl, Attila Jung, and Márton Naszódi. On Helly Numbers of Exponential Lattices. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 8:1-8:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
@InProceedings{ambrus_et_al:LIPIcs.SoCG.2023.8, author = {Ambrus, Gergely and Balko, Martin and Frankl, N\'{o}ra and Jung, Attila and Nasz\'{o}di, M\'{a}rton}, title = {{On Helly Numbers of Exponential Lattices}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {8:1--8:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8}, URN = {urn:nbn:de:0030-drops-178584}, doi = {10.4230/LIPIcs.SoCG.2023.8}, annote = {Keywords: Helly numbers, exponential lattices, Diophantine approximation} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Nóra Frankl, Tamás Hubai, and Dömötör Pálvölgyi. Almost-Monochromatic Sets and the Chromatic Number of the Plane. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 47:1-47:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
@InProceedings{frankl_et_al:LIPIcs.SoCG.2020.47, author = {Frankl, N\'{o}ra and Hubai, Tam\'{a}s and P\'{a}lv\"{o}lgyi, D\"{o}m\"{o}t\"{o}r}, title = {{Almost-Monochromatic Sets and the Chromatic Number of the Plane}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {47:1--47:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.47}, URN = {urn:nbn:de:0030-drops-122054}, doi = {10.4230/LIPIcs.SoCG.2020.47}, annote = {Keywords: discrete geometry, Hadwiger-Nelson problem, Euclidean Ramsey theory} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Nóra Frankl and Andrey Kupavskii. Almost Sharp Bounds on the Number of Discrete Chains in the Plane. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 48:1-48:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
@InProceedings{frankl_et_al:LIPIcs.SoCG.2020.48, author = {Frankl, N\'{o}ra and Kupavskii, Andrey}, title = {{Almost Sharp Bounds on the Number of Discrete Chains in the Plane}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {48:1--48:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.48}, URN = {urn:nbn:de:0030-drops-122064}, doi = {10.4230/LIPIcs.SoCG.2020.48}, annote = {Keywords: unit distance problem, unit distance graphs, discrete chains} }
Feedback for Dagstuhl Publishing