2 Search Results for "Gilad, Amir"


Document
Approximating Min-Diameter: Standard and Bichromatic

Authors: Aaron Berger, Jenny Kaufmann, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The min-diameter of a directed graph G is a measure of the largest distance between nodes. It is equal to the maximum min-distance d_{min}(u,v) across all pairs u,v ∈ V(G), where d_{min}(u,v) = min(d(u,v), d(v,u)). Min-diameter approximation in directed graphs has attracted attention recently as an offshoot of the classical and well-studied diameter approximation problem. Our work provides a 3/2-approximation algorithm for min-diameter in DAGs running in time O(m^{1.426} n^{0.288}), and a faster almost-3/2-approximation variant which runs in time O(m^{0.713} n). (An almost-α-approximation algorithm determines the min-diameter to within a multiplicative factor of α plus constant additive error.) This is the first known algorithm to solve 3/2-approximation for min-diameter in sparse DAGs in truly subquadratic time O(m^{2-ε}) for ε > 0; previously only a 2-approximation was known. By a conditional lower bound result of [Abboud et al, SODA 2016], a better than 3/2-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. Our work also presents the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph. We show that SETH implies that in DAGs, a better than 2 approximation cannot be achieved in truly subquadratic time, and that in general graphs, an approximation within a factor below 5/2 is similarly out of reach. We then obtain an O(m)-time algorithm which determines if bichromatic min-diameter is finite, and an almost-2-approximation algorithm for bichromatic min-diameter with runtime Õ(min(m^{4/3} n^{1/3}, m^{1/2} n^{3/2})).

Cite as

Aaron Berger, Jenny Kaufmann, and Virginia Vassilevska Williams. Approximating Min-Diameter: Standard and Bichromatic. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 17:1-17:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berger_et_al:LIPIcs.ESA.2023.17,
  author =	{Berger, Aaron and Kaufmann, Jenny and Vassilevska Williams, Virginia},
  title =	{{Approximating Min-Diameter: Standard and Bichromatic}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.17},
  URN =		{urn:nbn:de:0030-drops-186705},
  doi =		{10.4230/LIPIcs.ESA.2023.17},
  annote =	{Keywords: diameter, min distances, fine-grained, approximation algorithm}
}
Document
The Consistency of Probabilistic Databases with Independent Cells

Authors: Amir Gilad, Aviram Imber, and Benny Kimelfeld

Published in: LIPIcs, Volume 255, 26th International Conference on Database Theory (ICDT 2023)


Abstract
A probabilistic database with attribute-level uncertainty consists of relations where cells of some attributes may hold probability distributions rather than deterministic content. Such databases arise, implicitly or explicitly, in the context of noisy operations such as missing data imputation, where we automatically fill in missing values, column prediction, where we predict unknown attributes, and database cleaning (and repairing), where we replace the original values due to detected errors or violation of integrity constraints. We study the computational complexity of problems that regard the selection of cell values in the presence of integrity constraints. More precisely, we focus on functional dependencies and study three problems: (1) deciding whether the constraints can be satisfied by any choice of values, (2) finding a most probable such choice, and (3) calculating the probability of satisfying the constraints. The data complexity of these problems is determined by the combination of the set of functional dependencies and the collection of uncertain attributes. We give full classifications into tractable and intractable complexities for several classes of constraints, including a single dependency, matching constraints, and unary functional dependencies.

Cite as

Amir Gilad, Aviram Imber, and Benny Kimelfeld. The Consistency of Probabilistic Databases with Independent Cells. In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 22:1-22:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gilad_et_al:LIPIcs.ICDT.2023.22,
  author =	{Gilad, Amir and Imber, Aviram and Kimelfeld, Benny},
  title =	{{The Consistency of Probabilistic Databases with Independent Cells}},
  booktitle =	{26th International Conference on Database Theory (ICDT 2023)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-270-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{255},
  editor =	{Geerts, Floris and Vandevoort, Brecht},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2023.22},
  URN =		{urn:nbn:de:0030-drops-177644},
  doi =		{10.4230/LIPIcs.ICDT.2023.22},
  annote =	{Keywords: Probabilistic databases, attribute-level uncertainty, functional dependencies, most probable database}
}
  • Refine by Author
  • 1 Berger, Aaron
  • 1 Gilad, Amir
  • 1 Imber, Aviram
  • 1 Kaufmann, Jenny
  • 1 Kimelfeld, Benny
  • Show More...

  • Refine by Classification
  • 1 Information systems → Data management systems
  • 1 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 1 Probabilistic databases
  • 1 approximation algorithm
  • 1 attribute-level uncertainty
  • 1 diameter
  • 1 fine-grained
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail