35 Search Results for "Goldberg, Leslie Ann"


Document
Typed Compositional Quantum Computation with Lenses

Authors: Jacques Garrigue and Takafumi Saikawa

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We propose a type-theoretic framework for describing and proving properties of quantum computations, in particular those presented as quantum circuits. Our proposal is based on an observation that, in the polymorphic type system of Coq, currying on quantum states allows one to apply quantum gates directly inside a complex circuit. By introducing a discrete notion of lens to control this currying, we are further able to separate the combinatorics of the circuit structure from the computational content of gates. We apply our development to define quantum circuits recursively from the bottom up, and prove their correctness compositionally.

Cite as

Jacques Garrigue and Takafumi Saikawa. Typed Compositional Quantum Computation with Lenses. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garrigue_et_al:LIPIcs.ITP.2024.15,
  author =	{Garrigue, Jacques and Saikawa, Takafumi},
  title =	{{Typed Compositional Quantum Computation with Lenses}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.15},
  URN =		{urn:nbn:de:0030-drops-207431},
  doi =		{10.4230/LIPIcs.ITP.2024.15},
  annote =	{Keywords: quantum programming, semantics, lens, currying, Coq, MathComp}
}
Document
Two-State Spin Systems with Negative Interactions

Authors: Yumou Fei, Leslie Ann Goldberg, and Pinyan Lu

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study the approximability of computing the partition functions of two-state spin systems. The problem is parameterized by a 2×2 symmetric matrix. Previous results on this problem were restricted either to the case where the matrix has non-negative entries, or to the case where the diagonal entries are equal, i.e. Ising models. In this paper, we study the generalization to arbitrary 2×2 interaction matrices with real entries. We show that in some regions of the parameter space, it’s #P-hard to even determine the sign of the partition function, while in other regions there are fully polynomial approximation schemes for the partition function. Our results reveal several new computational phase transitions.

Cite as

Yumou Fei, Leslie Ann Goldberg, and Pinyan Lu. Two-State Spin Systems with Negative Interactions. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 45:1-45:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fei_et_al:LIPIcs.ITCS.2024.45,
  author =	{Fei, Yumou and Goldberg, Leslie Ann and Lu, Pinyan},
  title =	{{Two-State Spin Systems with Negative Interactions}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{45:1--45:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.45},
  URN =		{urn:nbn:de:0030-drops-195739},
  doi =		{10.4230/LIPIcs.ITCS.2024.45},
  annote =	{Keywords: Approximate Counting, Spin Systems, #P-Hardness, Randomized Algorithms}
}
Document
RANDOM
Sampling from the Random Cluster Model on Random Regular Graphs at All Temperatures via Glauber Dynamics

Authors: Andreas Galanis, Leslie Ann Goldberg, and Paulina Smolarova

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We consider the performance of Glauber dynamics for the random cluster model with real parameter q > 1 and temperature β > 0. Recent work by Helmuth, Jenssen and Perkins detailed the ordered/disordered transition of the model on random Δ-regular graphs for all sufficiently large q and obtained an efficient sampling algorithm for all temperatures β using cluster expansion methods. Despite this major progress, the performance of natural Markov chains, including Glauber dynamics, is not yet well understood on the random regular graph, partly because of the non-local nature of the model (especially at low temperatures) and partly because of severe bottleneck phenomena that emerge in a window around the ordered/disordered transition. Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from worst-case starting configurations can be avoided by initialising the chain more judiciously. Our main result establishes this conjecture for all sufficiently large q (with respect to Δ). Specifically, we consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the all-in and all-out, and obtain a pair of fast mixing bounds which cover all temperatures β, including in particular the bottleneck window. Our result is inspired by the recent approach of Gheissari and Sinclair for the Ising model who obtained a similar-flavoured mixing-time bound on the random regular graph for sufficiently low temperatures. To cover all temperatures in the RC model, we refine appropriately the structural results of Helmuth, Jenssen and Perkins about the ordered/disordered transition and show spatial mixing properties "within the phase", which are then related to the evolution of the chain.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and Paulina Smolarova. Sampling from the Random Cluster Model on Random Regular Graphs at All Temperatures via Glauber Dynamics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 64:1-64:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2023.64,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Smolarova, Paulina},
  title =	{{Sampling from the Random Cluster Model on Random Regular Graphs at All Temperatures via Glauber Dynamics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{64:1--64:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.64},
  URN =		{urn:nbn:de:0030-drops-188896},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.64},
  annote =	{Keywords: approximate counting, Glauber dynamics, random cluster model, approximate sampling, random regular graphs}
}
Document
Track A: Algorithms, Complexity and Games
Parameterised and Fine-Grained Subgraph Counting, Modulo 2

Authors: Leslie Ann Goldberg and Marc Roth

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Given a class of graphs ℋ, the problem ⊕Sub(ℋ) is defined as follows. The input is a graph H ∈ ℋ together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs of G that are isomorphic to H. The goal of this research is to determine for which classes ℋ the problem ⊕Sub(ℋ) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|)⋅|G|^O(1). Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕Sub(ℋ) is FPT if and only if the class of allowed patterns ℋ is matching splittable, which means that for some fixed B, every H ∈ ℋ can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at most B vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes ℋ, and (II) all tree pattern classes, i.e., all classes ℋ such that every H ∈ ℋ is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).

Cite as

Leslie Ann Goldberg and Marc Roth. Parameterised and Fine-Grained Subgraph Counting, Modulo 2. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 68:1-68:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{goldberg_et_al:LIPIcs.ICALP.2023.68,
  author =	{Goldberg, Leslie Ann and Roth, Marc},
  title =	{{Parameterised and Fine-Grained Subgraph Counting, Modulo 2}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{68:1--68:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.68},
  URN =		{urn:nbn:de:0030-drops-181200},
  doi =		{10.4230/LIPIcs.ICALP.2023.68},
  annote =	{Keywords: modular counting, parameterised complexity, fine-grained complexity, subgraph counting}
}
Document
Counting Subgraphs in Somewhere Dense Graphs

Authors: Marco Bressan, Leslie Ann Goldberg, Kitty Meeks, and Marc Roth

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We study the problems of counting copies and induced copies of a small pattern graph H in a large host graph G. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns H. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)⋅|G|^O(1) for some computable function f. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes 𝒢 as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: - Counting k-matchings in a graph G ∈ 𝒢 is fixed-parameter tractable if and only if 𝒢 is nowhere dense. - Counting k-independent sets in a graph G ∈ 𝒢 is fixed-parameter tractable if and only if 𝒢 is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if 𝒢 is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting k-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in F-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19). At the same time our proofs are much simpler: using structural characterisations of somewhere dense graphs, we show that a colourful version of a recent breakthrough technique for analysing pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed somewhere dense class of graphs, yielding a unified view of our current understanding of the complexity of subgraph counting.

Cite as

Marco Bressan, Leslie Ann Goldberg, Kitty Meeks, and Marc Roth. Counting Subgraphs in Somewhere Dense Graphs. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bressan_et_al:LIPIcs.ITCS.2023.27,
  author =	{Bressan, Marco and Goldberg, Leslie Ann and Meeks, Kitty and Roth, Marc},
  title =	{{Counting Subgraphs in Somewhere Dense Graphs}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.27},
  URN =		{urn:nbn:de:0030-drops-175304},
  doi =		{10.4230/LIPIcs.ITCS.2023.27},
  annote =	{Keywords: counting problems, somewhere dense graphs, parameterised complexity theory}
}
Document
Invited Talk
Some New (And Old) Results on Contention Resolution (Invited Talk)

Authors: Leslie Ann Goldberg

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
This is an extended abstract of my talk at ICALP 2022, based on joint work with John Lapinskas.

Cite as

Leslie Ann Goldberg. Some New (And Old) Results on Contention Resolution (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goldberg:LIPIcs.ICALP.2022.3,
  author =	{Goldberg, Leslie Ann},
  title =	{{Some New (And Old) Results on Contention Resolution}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.3},
  URN =		{urn:nbn:de:0030-drops-163444},
  doi =		{10.4230/LIPIcs.ICALP.2022.3},
  annote =	{Keywords: contention resolution, multiple access channel, randomised algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs

Authors: Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L^p-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of L^p-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L^p-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G(n,d/n), where the previously known algorithms run in time n^O(log d) or applied only to large d. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d, throughout the uniqueness regime.

Cite as

Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bezakova_et_al:LIPIcs.ICALP.2022.21,
  author =	{Bez\'{a}kov\'{a}, Ivona and Galanis, Andreas and Goldberg, Leslie Ann and \v{S}tefankovi\v{c}, Daniel},
  title =	{{Fast Sampling via Spectral Independence Beyond Bounded-Degree Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.21},
  URN =		{urn:nbn:de:0030-drops-163622},
  doi =		{10.4230/LIPIcs.ICALP.2022.21},
  annote =	{Keywords: Hard-core model, Random graphs, Markov chains}
}
Document
Track A: Algorithms, Complexity and Games
Metastability of the Potts Ferromagnet on Random Regular Graphs

Authors: Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel Štefankovič, and Eric Vigoda

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of "phases" (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the metastable phases for the q-state Potts model on the d-regular random graph for all integers q,d ≥ 3, and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the two phases coexist. The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for large q and d ≥ 5. Based on our new structural understanding of the model, we obtain various algorithmic consequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph "planting" argument combined with delicate bounds on random-graph percolation.

Cite as

Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana, Daniel Štefankovič, and Eric Vigoda. Metastability of the Potts Ferromagnet on Random Regular Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 45:1-45:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cojaoghlan_et_al:LIPIcs.ICALP.2022.45,
  author =	{Coja-Oghlan, Amin and Galanis, Andreas and Goldberg, Leslie Ann and Ravelomanana, Jean Bernoulli and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{Metastability of the Potts Ferromagnet on Random Regular Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{45:1--45:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.45},
  URN =		{urn:nbn:de:0030-drops-163865},
  doi =		{10.4230/LIPIcs.ICALP.2022.45},
  annote =	{Keywords: Markov chains, sampling, random regular graph, Potts model}
}
Document
Invited Talk
Approximately Counting Graph Homomorphisms and Retractions (Invited Talk)

Authors: Leslie Ann Goldberg

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
A homomorphism from a graph G to a graph H is a function from the vertices of G to the vertices of H that preserves the edges of G in the sense that every edge of G is mapped to an edge of H. By changing the target graph H, we can capture interesting structures in G. For example, homomorphisms from G to a k-clique H correspond to the proper k-colourings of G. There has been a lot of algorithmic work on the problem of (approximately) counting homomorphisms. The goal is to figure out for which graphs H the problem of approximately counting homomorphisms to H is algorithmically feasible. This talk will survey what is known. Despite much work, there are still plenty of open problems. We will discuss the problem of approximately counting list homomorphisms (where the input specifies, for each vertex of G, the list of vertices of H to which it can be mapped). Because the lists add extra expressibility, it is easier to prove that counting homomorphisms to a particular graph H is intractable. In fact, we have a full trichotomy (joint work with Galanis and Jerrum, 2017). Here, the complexity of homomorphism-counting is related to certain hereditary graph classes. The trichotomy will be explained in the talk - no prior knowledge of the area will be assumed. In more recent work, with Focke and Živn{ý}, we have investigated the complexity of counting retractions to H - this problem falls between homomorphism-counting and list-homomorphism counting. Here we have only a partial classification, which applies to all square-free graphs H. So again, there are plenty of open problems.

Cite as

Leslie Ann Goldberg. Approximately Counting Graph Homomorphisms and Retractions (Invited Talk). In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{goldberg:LIPIcs.FSTTCS.2021.3,
  author =	{Goldberg, Leslie Ann},
  title =	{{Approximately Counting Graph Homomorphisms and Retractions}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.3},
  URN =		{urn:nbn:de:0030-drops-155146},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.3},
  annote =	{Keywords: Graph homomorphisms, counting}
}
Document
RANDOM
Fast Mixing via Polymers for Random Graphs with Unbounded Degree

Authors: Andreas Galanis, Leslie Ann Goldberg, and James Stewart

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The polymer model framework is a classical tool from statistical mechanics that has recently been used to obtain approximation algorithms for spin systems on classes of bounded-degree graphs; examples include the ferromagnetic Potts model on expanders and on the grid. One of the key ingredients in the analysis of polymer models is controlling the growth rate of the number of polymers, which has been typically achieved so far by invoking the bounded-degree assumption. Nevertheless, this assumption is often restrictive and obstructs the applicability of the method to more general graphs. For example, sparse random graphs typically have bounded average degree and good expansion properties, but they include vertices with unbounded degree, and therefore are excluded from the current polymer-model framework. We develop a less restrictive framework for polymer models that relaxes the standard bounded-degree assumption, by reworking the relevant polymer models from the edge perspective. The edge perspective allows us to bound the growth rate of the number of polymers in terms of the total degree of polymers, which in turn can be related more easily to the expansion properties of the underlying graph. To apply our methods, we consider random graphs with unbounded degrees from a fixed degree sequence (with minimum degree at least 3) and obtain approximation algorithms for the ferromagnetic Potts model, which is a standard benchmark for polymer models. Our techniques also extend to more general spin systems.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Mixing via Polymers for Random Graphs with Unbounded Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 36:1-36:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2021.36,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Stewart, James},
  title =	{{Fast Mixing via Polymers for Random Graphs with Unbounded Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.36},
  URN =		{urn:nbn:de:0030-drops-147291},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.36},
  annote =	{Keywords: Markov chains, approximate counting, Potts model, expander graphs, random graphs}
}
Document
The Complexity of Approximating the Complex-Valued Potts Model

Authors: Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We study the complexity of approximating the partition function of the q-state Potts model and the closely related Tutte polynomial for complex values of the underlying parameters. Apart from the classical connections with quantum computing and phase transitions in statistical physics, recent work in approximate counting has shown that the behaviour in the complex plane, and more precisely the location of zeros, is strongly connected with the complexity of the approximation problem, even for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo focused on q = 2, which corresponds to the case of the Ising model; for q > 2, the behaviour in the complex plane is not as well understood and most work applies only to the real-valued Tutte plane. Our main result is a complete classification of the complexity of the approximation problems for all non-real values of the parameters, by establishing #P-hardness results that apply even when restricted to planar graphs. Our techniques apply to all q ≥ 2 and further complement/refine previous results both for the Ising model and the Tutte plane, answering in particular a question raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The Complexity of Approximating the Complex-Valued Potts Model. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.MFCS.2020.36,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Herrera-Poyatos, Andr\'{e}s},
  title =	{{The Complexity of Approximating the Complex-Valued Potts Model}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.36},
  URN =		{urn:nbn:de:0030-drops-127038},
  doi =		{10.4230/LIPIcs.MFCS.2020.36},
  annote =	{Keywords: approximate counting, Potts model, Tutte polynomial, partition function, complex numbers}
}
Document
Fast Algorithms for General Spin Systems on Bipartite Expanders

Authors: Andreas Galanis, Leslie Ann Goldberg, and James Stewart

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
A spin system is a framework in which the vertices of a graph are assigned spins from a finite set. The interactions between neighbouring spins give rise to weights, so a spin assignment can also be viewed as a weighted graph homomorphism. The problem of approximating the partition function (the aggregate weight of spin assignments) or of sampling from the resulting probability distribution is typically intractable for general graphs. In this work, we consider arbitrary spin systems on bipartite expander Δ-regular graphs, including the canonical class of bipartite random Δ-regular graphs. We develop fast approximate sampling and counting algorithms for general spin systems whenever the degree and the spectral gap of the graph are sufficiently large. Our approach generalises the techniques of Jenssen et al. and Chen et al. by showing that typical configurations on bipartite expanders correspond to "bicliques" of the spin system; then, using suitable polymer models, we show how to sample such configurations and approximate the partition function in Õ(n²) time, where n is the size of the graph.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Algorithms for General Spin Systems on Bipartite Expanders. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.MFCS.2020.37,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Stewart, James},
  title =	{{Fast Algorithms for General Spin Systems on Bipartite Expanders}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.37},
  URN =		{urn:nbn:de:0030-drops-127049},
  doi =		{10.4230/LIPIcs.MFCS.2020.37},
  annote =	{Keywords: bipartite expanders, approximate counting, spin systems}
}
Document
Track A: Algorithms, Complexity and Games
Counting Solutions to Random CNF Formulas

Authors: Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Kuan Yang

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We give the first efficient algorithm to approximately count the number of solutions in the random k-SAT model when the density of the formula scales exponentially with k. The best previous counting algorithm was due to Montanari and Shah and was based on the correlation decay method, which works up to densities (1+o_k(1))(2log k)/k, the Gibbs uniqueness threshold for the model. Instead, our algorithm harnesses a recent technique by Moitra to work for random formulas with much higher densities. The main challenge in our setting is to account for the presence of high-degree variables whose marginal distributions are hard to control and which cause significant correlations within the formula.

Cite as

Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Kuan Yang. Counting Solutions to Random CNF Formulas. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.ICALP.2020.53,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Guo, Heng and Yang, Kuan},
  title =	{{Counting Solutions to Random CNF Formulas}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{53:1--53:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.53},
  URN =		{urn:nbn:de:0030-drops-124603},
  doi =		{10.4230/LIPIcs.ICALP.2020.53},
  annote =	{Keywords: random CNF formulas, approximate counting}
}
Document
RANDOM
Fast Algorithms at Low Temperatures via Markov Chains

Authors: Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric Vigoda

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
For spin systems, such as the hard-core model on independent sets weighted by fugacity lambda>0, efficient algorithms for the associated approximate counting/sampling problems typically apply in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for abstract polymer models, and present an elementary proof of rapid mixing of this new chain under sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms with running time O(n log n) for the Potts model and O(n^2 log n) for the hard-core model, in contrast to typical running times of n^{O(log Delta)} for algorithms based on Barvinok’s polynomial interpolation method on graphs of maximum degree Delta. In addition, our approach via our polymer model Markov chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin system Glauber dynamics restricted to even and odd or "red" dominant portions of the respective state spaces.

Cite as

Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric Vigoda. Fast Algorithms at Low Temperatures via Markov Chains. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX-RANDOM.2019.41,
  author =	{Chen, Zongchen and Galanis, Andreas and Goldberg, Leslie Ann and Perkins, Will and Stewart, James and Vigoda, Eric},
  title =	{{Fast Algorithms at Low Temperatures via Markov Chains}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.41},
  URN =		{urn:nbn:de:0030-drops-112560},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.41},
  annote =	{Keywords: Markov chains, approximate counting, Potts model, hard-core model, expander graphs}
}
Document
Track A: Algorithms, Complexity and Games
The Complexity of Approximating the Matching Polynomial in the Complex Plane

Authors: Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study the problem of approximating the value of the matching polynomial on graphs with edge parameter gamma, where gamma takes arbitrary values in the complex plane. When gamma is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of gamma, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Delta as long as gamma is not a negative real number less than or equal to -1/(4(Delta-1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Delta >= 3 and all real gamma less than -1/(4(Delta-1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Delta with edge parameter gamma is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real gamma it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of gamma values on the negative real axis. Nevertheless, we show that the result does extend for any complex value gamma that does not lie on the negative real axis. Our analysis accounts for complex values of gamma using geodesic distances in the complex plane in the metric defined by an appropriate density function.

Cite as

Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. The Complexity of Approximating the Matching Polynomial in the Complex Plane. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 22:1-22:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bezakova_et_al:LIPIcs.ICALP.2019.22,
  author =	{Bez\'{a}kov\'{a}, Ivona and Galanis, Andreas and Goldberg, Leslie Ann and \v{S}tefankovi\v{c}, Daniel},
  title =	{{The Complexity of Approximating the Matching Polynomial in the Complex Plane}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{22:1--22:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.22},
  URN =		{urn:nbn:de:0030-drops-105983},
  doi =		{10.4230/LIPIcs.ICALP.2019.22},
  annote =	{Keywords: matchings, partition function, correlation decay, connective constant}
}
  • Refine by Author
  • 34 Goldberg, Leslie Ann
  • 16 Galanis, Andreas
  • 8 Jerrum, Mark
  • 5 Richerby, David
  • 4 Bezáková, Ivona
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 10 approximate counting
  • 5 Potts model
  • 5 counting problems
  • 4 Computational complexity
  • 4 Markov chains
  • Show More...

  • Refine by Type
  • 35 document

  • Refine by Publication Year
  • 3 2014
  • 3 2016
  • 3 2018
  • 3 2019
  • 3 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail