2 Search Results for "Golowich, Louis"


Document
Pseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branching Programs

Authors: Louis Golowich and Salil Vadhan

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We study the pseudorandomness of random walks on expander graphs against tests computed by symmetric functions and permutation branching programs. These questions are motivated by applications of expander walks in the coding theory and derandomization literatures. A line of prior work has shown that random walks on expanders with second largest eigenvalue λ fool symmetric functions up to a O(λ) error in total variation distance, but only for the case where the vertices are labeled with symbols from a binary alphabet, and with a suboptimal dependence on the bias of the labeling. We generalize these results to labelings with an arbitrary alphabet, and for the case of binary labelings we achieve an optimal dependence on the labeling bias. We extend our analysis to unify it with and strengthen the expander-walk Chernoff bound. We then show that expander walks fool permutation branching programs up to a O(λ) error in 𝓁₂-distance, and we prove that much stronger bounds hold for programs with a certain structure. We also prove lower bounds to show that our results are tight. To prove our results for symmetric functions, we analyze the Fourier coefficients of the relevant distributions using linear-algebraic techniques. Our analysis for permutation branching programs is likewise linear-algebraic in nature, but also makes use of the recently introduced singular-value approximation notion for matrices (Ahmadinejad et al. 2021).

Cite as

Louis Golowich and Salil Vadhan. Pseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branching Programs. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 27:1-27:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{golowich_et_al:LIPIcs.CCC.2022.27,
  author =	{Golowich, Louis and Vadhan, Salil},
  title =	{{Pseudorandomness of Expander Random Walks for Symmetric Functions and Permutation Branching Programs}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{27:1--27:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.27},
  URN =		{urn:nbn:de:0030-drops-165893},
  doi =		{10.4230/LIPIcs.CCC.2022.27},
  annote =	{Keywords: Expander graph, Random walk, Pseudorandomness}
}
Document
RANDOM
Improved Product-Based High-Dimensional Expanders

Authors: Louis Golowich

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
High-dimensional expanders generalize the notion of expander graphs to higher-dimensional simplicial complexes. In contrast to expander graphs, only a handful of high-dimensional expander constructions have been proposed, and no elementary combinatorial construction with near-optimal expansion is known. In this paper, we introduce an improved combinatorial high-dimensional expander construction, by modifying a previous construction of Liu, Mohanty, and Yang (ITCS 2020), which is based on a high-dimensional variant of a tensor product. Our construction achieves a spectral gap of Ω(1/(k²)) for random walks on the k-dimensional faces, which is only quadratically worse than the optimal bound of Θ(1/k). Previous combinatorial constructions, including that of Liu, Mohanty, and Yang, only achieved a spectral gap that is exponentially small in k. We also present reasoning that suggests our construction is optimal among similar product-based constructions.

Cite as

Louis Golowich. Improved Product-Based High-Dimensional Expanders. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 38:1-38:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{golowich:LIPIcs.APPROX/RANDOM.2021.38,
  author =	{Golowich, Louis},
  title =	{{Improved Product-Based High-Dimensional Expanders}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{38:1--38:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.38},
  URN =		{urn:nbn:de:0030-drops-147319},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.38},
  annote =	{Keywords: High-Dimensional Expander, Expander Graph, Random Walk}
}
  • Refine by Author
  • 2 Golowich, Louis
  • 1 Vadhan, Salil

  • Refine by Classification
  • 1 Theory of computation → Expander graphs and randomness extractors
  • 1 Theory of computation → Pseudorandomness and derandomization

  • Refine by Keyword
  • 1 Expander Graph
  • 1 Expander graph
  • 1 High-Dimensional Expander
  • 1 Pseudorandomness
  • 1 Random Walk
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail