17 Search Results for "Gottlob, Georg"


Document
Invited Talk
Rule-Based Temporal Reasoning: Exploring DatalogMTL (Invited Talk)

Authors: Przemysław Andrzej Wałęga

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
I will introduce DatalogMTL - an extension of Datalog, augmenting it with operators known from metric temporal logic (MTL). DatalogMTL is an expressive language which allows us for complex temporal reasoning over a dense timeline and, at the same time, remains decidable. I will provide an overview of research on DatalogMTL by discussing its computational complexity, syntactic and semantic modifications, practical reasoning approaches, applications, and future research directions.

Cite as

Przemysław Andrzej Wałęga. Rule-Based Temporal Reasoning: Exploring DatalogMTL (Invited Talk). In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{walega:LIPIcs.TIME.2024.3,
  author =	{Wa{\l}\k{e}ga, Przemys{\l}aw Andrzej},
  title =	{{Rule-Based Temporal Reasoning: Exploring DatalogMTL}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.3},
  URN =		{urn:nbn:de:0030-drops-212106},
  doi =		{10.4230/LIPIcs.TIME.2024.3},
  annote =	{Keywords: Temporal Datalog, Temporal Logic Programming, Temporal Reasoning}
}
Document
Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four

Authors: Artem Kaznatcheev and Melle van Marle

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
We examine the complexity of maximising fitness via local search on valued constraint satisfaction problems (VCSPs). We consider two kinds of local ascents: (1) steepest ascents, where each step changes the domain that produces a maximal increase in fitness; and (2) ≺-ordered ascents, where - of the domains with available fitness increasing changes - each step changes the ≺-minimal domain. We provide a general padding argument to simulate any ordered ascent by a steepest ascent. We construct a VCSP that is a path of binary constraints between alternating 2-state and 3-state domains with exponentially long ordered ascents. We apply our padding argument to this VCSP to obtain a Boolean VCSP that has a constraint (hyper)graph of arity 5 and pathwidth 4 with exponential steepest ascents. This is an improvement on the previous best known construction for long steepest ascents, which had arity 8 and pathwidth 7.

Cite as

Artem Kaznatcheev and Melle van Marle. Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaznatcheev_et_al:LIPIcs.CP.2024.17,
  author =	{Kaznatcheev, Artem and van Marle, Melle},
  title =	{{Exponential Steepest Ascent from Valued Constraint Graphs of Pathwidth Four}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.17},
  URN =		{urn:nbn:de:0030-drops-207021},
  doi =		{10.4230/LIPIcs.CP.2024.17},
  annote =	{Keywords: valued constraint satisfaction problem, steepest ascent, local search, bounded treewidth, intractability}
}
Document
Mutational Fuzz Testing for Constraint Modeling Systems

Authors: Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint programming (CP) modeling languages, like MiniZinc, Essence and CPMpy, play a crucial role in making CP technology accessible to non-experts. Both solver-independent modeling frameworks and solvers themselves are complex pieces of software that can contain bugs, which undermines their usefulness. Mutational fuzz testing is a way to test complex systems by stochastically mutating input and verifying preserved properties of the mutated output. We investigate different mutations and verification methods that can be used on the constraint specifications directly. This includes methods proposed in the context of SMT problem specifications, as well as new methods related to global constraints, optimization, and solution counting/preservation. Our results show that such a fuzz testing approach improves the overall code coverage of a modeling system compared to only unit testing, and is able to find bugs in the whole toolchain, from the modeling language transformations themselves to the underlying solvers.

Cite as

Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns. Mutational Fuzz Testing for Constraint Modeling Systems. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 29:1-29:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanroose_et_al:LIPIcs.CP.2024.29,
  author =	{Vanroose, Wout and Bleukx, Ignace and Devriendt, Jo and Tsouros, Dimos and Verhaeghe, H\'{e}l\`{e}ne and Guns, Tias},
  title =	{{Mutational Fuzz Testing for Constraint Modeling Systems}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{29:1--29:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.29},
  URN =		{urn:nbn:de:0030-drops-207149},
  doi =		{10.4230/LIPIcs.CP.2024.29},
  annote =	{Keywords: fuzz testing, Constraint modeling language, bugs, mutational testing, modeling, constraint reformulation}
}
Document
Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth

Authors: Isolde Adler and Eva Fluck

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study a variation of the cops and robber game characterising treewidth, where in each round at most one cop may be placed and in each play at most q rounds are played, where q is a parameter of the game. We prove that if k cops have a winning strategy in this game, then k cops have a monotone winning strategy. As a corollary we obtain a new characterisation of bounded depth treewidth, and we give a positive answer to an open question by Fluck, Seppelt and Spitzer (2024), thus showing that graph classes of bounded depth treewidth are homomorphism distinguishing closed. Our proof of monotonicity substantially reorganises a winning strategy by first transforming it into a pre-tree decomposition, which is inspired by decompositions of matroids, and then applying an intricate breadth-first "cleaning up" procedure along the pre-tree decomposition (which may temporarily lose the property of representing a strategy), in order to achieve monotonicity while controlling the number of rounds simultaneously across all branches of the decomposition via a vertex exchange argument. We believe this can be useful in future research.

Cite as

Isolde Adler and Eva Fluck. Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{adler_et_al:LIPIcs.MFCS.2024.6,
  author =	{Adler, Isolde and Fluck, Eva},
  title =	{{Monotonicity of the Cops and Robber Game for Bounded Depth Treewidth}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.6},
  URN =		{urn:nbn:de:0030-drops-205621},
  doi =		{10.4230/LIPIcs.MFCS.2024.6},
  annote =	{Keywords: tree decompositions, treewidth, treedepth, cops-and-robber game, monotonicity, homomorphism distinguishing closure}
}
Document
On the Descriptive Complexity of Vertex Deletion Problems

Authors: Max Bannach, Florian Chudigiewitsch, and Till Tantau

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Vertex deletion problems for graphs are studied intensely in classical and parameterized complexity theory. They ask whether we can delete at most k vertices from an input graph such that the resulting graph has a certain property. Regarding k as the parameter, a dichotomy was recently shown based on the number of quantifier alternations of first-order formulas that describe the property. In this paper, we refine this classification by moving from quantifier alternations to individual quantifier patterns and from a dichotomy to a trichotomy, resulting in a complete classification of the complexity of vertex deletion problems based on their quantifier pattern. The more fine-grained approach uncovers new tractable fragments, which we show to not only lie in FPT, but even in parameterized constant-depth circuit complexity classes. On the other hand, we show that vertex deletion becomes intractable already for just one quantifier per alternation, that is, there is a formula of the form ∀ x∃ y∀ z (ψ), with ψ quantifier-free, for which the vertex deletion problem is W[1]-hard. The fine-grained analysis also allows us to uncover differences in the complexity landscape when we consider different kinds of graphs and more general structures: While basic graphs (undirected graphs without self-loops), undirected graphs, and directed graphs each have a different frontier of tractability, the frontier for arbitrary logical structures coincides with that of directed graphs.

Cite as

Max Bannach, Florian Chudigiewitsch, and Till Tantau. On the Descriptive Complexity of Vertex Deletion Problems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bannach_et_al:LIPIcs.MFCS.2024.17,
  author =	{Bannach, Max and Chudigiewitsch, Florian and Tantau, Till},
  title =	{{On the Descriptive Complexity of Vertex Deletion Problems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.17},
  URN =		{urn:nbn:de:0030-drops-205733},
  doi =		{10.4230/LIPIcs.MFCS.2024.17},
  annote =	{Keywords: graph problems, fixed-parameter tractability, descriptive complexity, vertex deletion}
}
Document
When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines

Authors: Filippo Bonchi, Alessandro Di Giorgio, and Davide Trotta

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Fo-bicategories are a categorification of Peirce’s calculus of relations. Notably, their laws provide a proof system for first-order logic that is both purely equational and complete. This paper illustrates a correspondence between fo-bicategories and Lawvere’s hyperdoctrines. To streamline our proof, we introduce peircean bicategories, which offer a more succinct characterization of fo-bicategories.

Cite as

Filippo Bonchi, Alessandro Di Giorgio, and Davide Trotta. When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.MFCS.2024.30,
  author =	{Bonchi, Filippo and Di Giorgio, Alessandro and Trotta, Davide},
  title =	{{When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.30},
  URN =		{urn:nbn:de:0030-drops-205867},
  doi =		{10.4230/LIPIcs.MFCS.2024.30},
  annote =	{Keywords: relational algebra, hyperdoctrines, cartesian bicategories, string diagrams}
}
Document
Adjoint Natural Deduction

Authors: Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Adjoint logic is a general approach to combining multiple logics with different structural properties, including linear, affine, strict, and (ordinary) intuitionistic logics, where each proposition has an intrinsic mode of truth. It has been defined in the form of a sequent calculus because the central concept of independence is most clearly understood in this form, and because it permits a proof of cut elimination following standard techniques. In this paper we present a natural deduction formulation of adjoint logic and show how it is related to the sequent calculus. As a consequence, every provable proposition has a verification (sometimes called a long normal form). We also give a computational interpretation of adjoint logic in the form of a functional language and prove properties of computations that derive from the structure of modes, including freedom from garbage (for modes without weakening and contraction), strictness (for modes disallowing weakening), and erasure (based on a preorder between modes). Finally, we present a surprisingly subtle algorithm for type checking.

Cite as

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint Natural Deduction. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jang_et_al:LIPIcs.FSCD.2024.15,
  author =	{Jang, Junyoung and Roshal, Sophia and Pfenning, Frank and Pientka, Brigitte},
  title =	{{Adjoint Natural Deduction}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.15},
  URN =		{urn:nbn:de:0030-drops-203441},
  doi =		{10.4230/LIPIcs.FSCD.2024.15},
  annote =	{Keywords: Substructural Logic, Type Systems, Functional Programming}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Identifying Tractable Quantified Temporal Constraints Within Ord-Horn

Authors: Jakub Rydval, Žaneta Semanišinová, and Michał Wrona

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The constraint satisfaction problem, parameterized by a relational structure, provides a general framework for expressing computational decision problems. Already the restriction to the class of all finite structures forms an interesting microcosm on its own, but to express decision problems in temporal reasoning one has to take a step beyond the finite-domain realm. An important class of templates used in this context are temporal structures, i.e., structures over ℚ whose relations are first-order definable using the usual countable dense linear order without endpoints. In the standard setting, which allows only existential quantification over input variables, the complexity of finite and temporal constraints has been fully classified. In the quantified setting, i.e., when one also allows universal quantifiers, there is only a handful of partial classification results and many concrete cases of unknown complexity. This paper presents a significant progress towards understanding the complexity of the quantified constraint satisfaction problem for temporal structures. We provide a complexity dichotomy for quantified constraints over the Ord-Horn fragment, which played an important role in understanding the complexity of constraints both over temporal structures and in Allen’s interval algebra. We show that all problems under consideration are in P or coNP-hard. In particular, we determine the complexity of the quantified constraint satisfaction problem for (ℚ;x = y⇒ x ≥ z), hereby settling a question open for more than ten years.

Cite as

Jakub Rydval, Žaneta Semanišinová, and Michał Wrona. Identifying Tractable Quantified Temporal Constraints Within Ord-Horn. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 151:1-151:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rydval_et_al:LIPIcs.ICALP.2024.151,
  author =	{Rydval, Jakub and Semani\v{s}inov\'{a}, \v{Z}aneta and Wrona, Micha{\l}},
  title =	{{Identifying Tractable Quantified Temporal Constraints Within Ord-Horn}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{151:1--151:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.151},
  URN =		{urn:nbn:de:0030-drops-202944},
  doi =		{10.4230/LIPIcs.ICALP.2024.151},
  annote =	{Keywords: constraint satisfaction problems, quantifiers, dichotomy, temporal reasoning, Ord-Horn}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Invited Talk
Artificial Intelligence and Artificial Ignorance (Invited Talk)

Authors: Georg Gottlob

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
This invited talk first delves into the division between the two primary branches of AI research: symbolic AI, which predominantly focuses on knowledge representation and logical reasoning, and sub-symbolic AI, primarily centered on machine learning employing neural networks. We explore both the notable accomplishments and the challenges encountered in each of these approaches. We provide instances where traditional deep learning encounters limitations, and we elucidate significant obstacles in achieving automated symbolic reasoning. We then discuss the recent groundbreaking advancements in generative AI, driven by language models such as ChatGPT. We showcase instances where these models excel and, conversely, where they exhibit shortcomings and produce erroneous information. We identify and illustrate five key reasons for potential failures in language models, which include: [(i)] 1) information loss due to data compression, 2) training bias, 3) the incorporation of incorrect external data, 4) the misordering of results, and 5) the failure to detect and resolve logical inconsistencies contained in a sequence of LLM-generated prompt-answers. Lastly, we touch upon the Chat2Data project, which endeavors to leverage language models for the automated verification and enhancement of relational databases, all while mitigating the pitfalls (i)-(v) mentioned earlier.

Cite as

Georg Gottlob. Artificial Intelligence and Artificial Ignorance (Invited Talk). In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gottlob:LIPIcs.CSL.2024.3,
  author =	{Gottlob, Georg},
  title =	{{Artificial Intelligence and Artificial Ignorance}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.3},
  URN =		{urn:nbn:de:0030-drops-196459},
  doi =		{10.4230/LIPIcs.CSL.2024.3},
  annote =	{Keywords: AI applications, symbolic AI, sub-symbolic AI, AI usefulness, achievements of symbolic AI, achievements of machine learning, machine learning errors and mistakes, large language models, LLMs, LLM usefulness, LLM mistakes, inaccuracies}
}
Document
Fractional Covers of Hypergraphs with Bounded Multi-Intersection

Authors: Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is ≤ k for some constant k. We also show how our results translate to fractional vertex covers.

Cite as

Georg Gottlob, Matthias Lanzinger, Reinhard Pichler, and Igor Razgon. Fractional Covers of Hypergraphs with Bounded Multi-Intersection. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gottlob_et_al:LIPIcs.MFCS.2020.41,
  author =	{Gottlob, Georg and Lanzinger, Matthias and Pichler, Reinhard and Razgon, Igor},
  title =	{{Fractional Covers of Hypergraphs with Bounded Multi-Intersection}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.41},
  URN =		{urn:nbn:de:0030-drops-127317},
  doi =		{10.4230/LIPIcs.MFCS.2020.41},
  annote =	{Keywords: Fractional graph theory, fractional edge cover, fractional hypertree width, bounded multi-intersection, fractional cover, fractional vertex cover}
}
Document
Datalog: Bag Semantics via Set Semantics

Authors: Leopoldo Bertossi, Georg Gottlob, and Reinhard Pichler

Published in: LIPIcs, Volume 127, 22nd International Conference on Database Theory (ICDT 2019)


Abstract
Duplicates in data management are common and problematic. In this work, we present a translation of Datalog under bag semantics into a well-behaved extension of Datalog, the so-called warded Datalog^+/-, under set semantics. From a theoretical point of view, this allows us to reason on bag semantics by making use of the well-established theoretical foundations of set semantics. From a practical point of view, this allows us to handle the bag semantics of Datalog by powerful, existing query engines for the required extension of Datalog. This use of Datalog^+/- is extended to give a set semantics to duplicates in Datalog^+/- itself. We investigate the properties of the resulting Datalog^+/- programs, the problem of deciding multiplicities, and expressibility of some bag operations. Moreover, the proposed translation has the potential for interesting applications such as to Multiset Relational Algebra and the semantic web query language SPARQL with bag semantics.

Cite as

Leopoldo Bertossi, Georg Gottlob, and Reinhard Pichler. Datalog: Bag Semantics via Set Semantics. In 22nd International Conference on Database Theory (ICDT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 127, pp. 16:1-16:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bertossi_et_al:LIPIcs.ICDT.2019.16,
  author =	{Bertossi, Leopoldo and Gottlob, Georg and Pichler, Reinhard},
  title =	{{Datalog: Bag Semantics via Set Semantics}},
  booktitle =	{22nd International Conference on Database Theory (ICDT 2019)},
  pages =	{16:1--16:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-101-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{127},
  editor =	{Barcelo, Pablo and Calautti, Marco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2019.16},
  URN =		{urn:nbn:de:0030-drops-103188},
  doi =		{10.4230/LIPIcs.ICDT.2019.16},
  annote =	{Keywords: Datalog, duplicates, multisets, query answering, chase, Datalog+/-}
}
Document
The ICDT 2016 Test of Time Award Announcement

Authors: Foto N. Afrati, Claire David, and Georg Gottlob

Published in: LIPIcs, Volume 48, 19th International Conference on Database Theory (ICDT 2016)


Abstract
We describe the 2016 ICDT Test of Time Award which is awarded to Chandra Chekuri and Anand Rajaraman for their 1997 ICDT paper on "Conjunctive Query Containment Revisited".

Cite as

Foto N. Afrati, Claire David, and Georg Gottlob. The ICDT 2016 Test of Time Award Announcement. In 19th International Conference on Database Theory (ICDT 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 48, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{afrati_et_al:LIPIcs.ICDT.2016.1,
  author =	{Afrati, Foto N. and David, Claire and Gottlob, Georg},
  title =	{{The ICDT 2016 Test of Time Award Announcement}},
  booktitle =	{19th International Conference on Database Theory (ICDT 2016)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-002-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{48},
  editor =	{Martens, Wim and Zeume, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2016.1},
  URN =		{urn:nbn:de:0030-drops-57938},
  doi =		{10.4230/LIPIcs.ICDT.2016.1},
  annote =	{Keywords: conjunctive query, treewidth, NP-hardness, rewriting}
}
Document
Computer Science & Problem Solving: New Foundations (Dagstuhl Seminar 11351)

Authors: Iris van Rooij, Yll Haxhimusa, Zygmunt Pizlo, and Georg Gottlob

Published in: Dagstuhl Reports, Volume 1, Issue 8 (2011)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 11351 ``Computer Science & Problem Solving: New Foundations''. This seminar was the first Dagstuhl seminar that brought together a balanced group of computer scientists and psychologists to exchange perspectives on problem solving. In the 1950s the seminal work of Allen Newell and Herbert Simon laid the theoretical foundations for problem solving research as we know it today, but the field had since become disconnected from contemporary computer science. The aim of this seminar was to promote theoretical progress in problem solving research by renewing the connection between psychology and computer science in this area.

Cite as

Iris van Rooij, Yll Haxhimusa, Zygmunt Pizlo, and Georg Gottlob. Computer Science & Problem Solving: New Foundations (Dagstuhl Seminar 11351). In Dagstuhl Reports, Volume 1, Issue 8, pp. 96-124, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@Article{vanrooij_et_al:DagRep.1.8.96,
  author =	{van Rooij, Iris and Haxhimusa, Yll and Pizlo, Zygmunt and Gottlob, Georg},
  title =	{{Computer Science \& Problem Solving: New Foundations (Dagstuhl Seminar 11351)}},
  pages =	{96--124},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2011},
  volume =	{1},
  number =	{8},
  editor =	{van Rooij, Iris and Haxhimusa, Yll and Pizlo, Zygmunt and Gottlob, Georg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.1.8.96},
  URN =		{urn:nbn:de:0030-drops-33169},
  doi =		{10.4230/DagRep.1.8.96},
  annote =	{Keywords: Problem solving, Cognitive psychology, Cognitive systems, Vision Representations, Computational complexity}
}
  • Refine by Author
  • 7 Gottlob, Georg
  • 2 Pichler, Reinhard
  • 1 Adler, Isolde
  • 1 Afrati, Foto N.
  • 1 Aschinger, Markus
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Logic
  • 2 Computing methodologies → Artificial intelligence
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Computing methodologies → Temporal reasoning
  • 2 Theory of computation → Complexity theory and logic
  • Show More...

  • Refine by Keyword
  • 2 treewidth
  • 1 AI applications
  • 1 AI usefulness
  • 1 Applications of logics
  • 1 Cognitive psychology
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 11 2024
  • 2 2011
  • 1 2000
  • 1 2016
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail