17 Search Results for "Høyer, Peter"


Document
Quantum Algorithms for One-Sided Crossing Minimization

Authors: Susanna Caroppo, Giordano Da Lozzo, and Giuseppe Di Battista

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We present singly-exponential quantum algorithms for the One-Sided Crossing Minimization (OSCM) problem. We show that OSCM can be viewed as a set problem amenable for exact algorithms with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum dynamic programming framework of Ambainis et al. [Quantum Speedups for Exponential-Time Dynamic Programming Algorithms. SODA 2019] to devise a QRAM-based algorithm that solves OSCM in 𝒪^*(1.728ⁿ) time and space. Second, we use quantum divide and conquer to obtain an algorithm that solves OSCM without using QRAM in 𝒪^*(2ⁿ) time and polynomial space.

Cite as

Susanna Caroppo, Giordano Da Lozzo, and Giuseppe Di Battista. Quantum Algorithms for One-Sided Crossing Minimization. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 20:1-20:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{caroppo_et_al:LIPIcs.GD.2024.20,
  author =	{Caroppo, Susanna and Da Lozzo, Giordano and Di Battista, Giuseppe},
  title =	{{Quantum Algorithms for One-Sided Crossing Minimization}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{20:1--20:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.20},
  URN =		{urn:nbn:de:0030-drops-213045},
  doi =		{10.4230/LIPIcs.GD.2024.20},
  annote =	{Keywords: One-sided crossing minimization, quantum graph drawing, quantum dynamic programming, quantum divide and conquer, exact exponential algorithms}
}
Document
Almost Optimal Algorithms for Token Collision in Anonymous Networks

Authors: Sirui Bai, Xinyu Fu, Xudong Wu, Penghui Yao, and Chaodong Zheng

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
In distributed systems, situations often arise where some nodes each holds a collection of tokens, and all nodes collectively need to determine whether all tokens are distinct. For example, if each token represents a logged-in user, the problem corresponds to checking whether there are duplicate logins. Similarly, if each token represents a data object or a timestamp, the problem corresponds to checking whether there are conflicting operations in distributed databases. In distributed computing theory, unique identifiers generation is also related to this problem: each node generates one token, which is its identifier, then a verification phase is needed to ensure that all identifiers are unique. In this paper, we formalize and initiate the study of token collision. In this problem, a collection of k tokens, each represented by some length-L bit string, are distributed to n nodes of an anonymous CONGEST network in an arbitrary manner. The nodes need to determine whether there are tokens with an identical value. We present near optimal deterministic algorithms for the token collision problem with Õ(D+k⋅L/log n) round complexity, where D denotes the network diameter. Besides high efficiency, the prior knowledge required by our algorithms is also limited. For completeness, we further present a near optimal randomized algorithm for token collision.

Cite as

Sirui Bai, Xinyu Fu, Xudong Wu, Penghui Yao, and Chaodong Zheng. Almost Optimal Algorithms for Token Collision in Anonymous Networks. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bai_et_al:LIPIcs.DISC.2024.4,
  author =	{Bai, Sirui and Fu, Xinyu and Wu, Xudong and Yao, Penghui and Zheng, Chaodong},
  title =	{{Almost Optimal Algorithms for Token Collision in Anonymous Networks}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.4},
  URN =		{urn:nbn:de:0030-drops-212319},
  doi =		{10.4230/LIPIcs.DISC.2024.4},
  annote =	{Keywords: Token collision, anonymous networks, deterministic algorithms}
}
Document
Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights

Authors: Vikrant Ashvinkumar, Aaron Bernstein, Nairen Cao, Christoph Grunau, Bernhard Haeupler, Yonggang Jiang, Danupon Nanongkai, and Hsin-Hao Su

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths when edges can have negative integer weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in all these settings to n^{o(1)} calls to any SSSP algorithm that works on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source. More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with - W_{SSSP}(m,n)n^{o(1)} work and S_{SSSP}(m,n)n^{o(1)} span, given access to a non-negative-weight SSSP algorithm with W_{SSSP}(m,n) work and S_{SSSP}(m,n) span in the parallel model, and - T_{SSSP}(n,D)n^{o(1)} rounds, given access to a non-negative-weight SSSP algorithm that takes T_{SSSP}(n,D) rounds in CONGEST, and - Q_{SSSP}(m,n)n^{o(1)} quantum edge queries, given access to a non-negative-weight SSSP algorithm that takes Q_{SSSP}(m,n) queries in the quantum edge query model. This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [Bernstein et al., 2022], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms for negative-weight SSSP with - m^{1+o(1)} work and n^{1/2+o(1)} span in the parallel model, and - (n^{2/5}D^{2/5} + √n + D)n^{o(1)} rounds in CONGEST, and - m^{1/2}n^{1/2+o(1)} quantum queries to the adjacency list or n^{1.5+o(1)} quantum queries to the adjacency matrix. Up to a n^{o(1)} factor, the parallel and distributed results match the current best upper bounds for reachability [Jambulapati et al., 2019; Cao et al., 2021]. Consequently, any improvement to negative-weight SSSP in these models beyond the n^{o(1)} factor necessitates an improvement to the current best bounds for reachability. The quantum result matches the lower bound up to an n^{o(1)} factor [Aija Berzina et al., 2004]. Our main technical contribution is an efficient reduction from computing a low-diameter decomposition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models, and been rather unstudied in quantum models. The directed LDD is a crucial step of the sequential algorithm in [Bernstein et al., 2022], and we think that its applications to other problems in parallel and distributed models are far from being exhausted. Other ingredients of our results include altering the recursion structure of the scaling algorithm in [Bernstein et al., 2022] to surmount difficulties that arise in these models, and also an efficient reduction from computing strongly connected components to computations of SSSP with a virtual source in CONGEST. The latter result answers a question posed in [Bernstein and Nanongkai, 2019] in the negative.

Cite as

Vikrant Ashvinkumar, Aaron Bernstein, Nairen Cao, Christoph Grunau, Bernhard Haeupler, Yonggang Jiang, Danupon Nanongkai, and Hsin-Hao Su. Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ashvinkumar_et_al:LIPIcs.ESA.2024.13,
  author =	{Ashvinkumar, Vikrant and Bernstein, Aaron and Cao, Nairen and Grunau, Christoph and Haeupler, Bernhard and Jiang, Yonggang and Nanongkai, Danupon and Su, Hsin-Hao},
  title =	{{Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{13:1--13:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.13},
  URN =		{urn:nbn:de:0030-drops-210849},
  doi =		{10.4230/LIPIcs.ESA.2024.13},
  annote =	{Keywords: Parallel algorithm, distributed algorithm, shortest paths}
}
Document
Parameterized Quantum Query Algorithms for Graph Problems

Authors: Tatsuya Terao and Ryuhei Mori

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper, we consider the parameterized quantum query complexity for graph problems. We design parameterized quantum query algorithms for k-vertex cover and k-matching problems, and present lower bounds on the parameterized quantum query complexity. Then, we show that our quantum query algorithms are optimal up to a constant factor when the parameters are small. Our main results are as follows. Parameterized quantum query complexity of vertex cover. In the k-vertex cover problem, we are given an undirected graph G with n vertices and an integer k, and the objective is to determine whether G has a vertex cover of size at most k. We show that the quantum query complexity of the k-vertex cover problem is O(√kn + k^{3/2}√n) in the adjacency matrix model. For the design of the quantum query algorithm, we use the method of kernelization, a well-known tool for the design of parameterized classical algorithms, combined with Grover’s search. Parameterized quantum query complexity of matching. In the k-matching problem, we are given an undirected graph G with n vertices and an integer k, and the objective is to determine whether G has a matching of size at least k. We show that the quantum query complexity of the k-matching problem is O(√kn + k²) in the adjacency matrix model. We obtain this upper bound by using Grover’s search carefully and analyzing the number of Grover’s searches by making use of potential functions. We also show that the quantum query complexity of the maximum matching problem is O(√pn + p²) where p is the size of the maximum matching. For small p, it improves known bounds Õ(n^{3/2}) for bipartite graphs [Blikstad-v.d.Brand-Efron-Mukhopadhyay-Nanongkai, FOCS 2022] and O(n^{7/4}) for general graphs [Kimmel-Witter, WADS 2021]. Lower bounds on parameterized quantum query complexity. We also present lower bounds on the quantum query complexities of the k-vertex cover and k-matching problems. The lower bounds prove the optimality of the above parameterized quantum query algorithms up to a constant factor when k is small. Indeed, the quantum query complexities of the k-vertex cover and k-matching problems are both Θ(√k n) when k = O(√n) and k = O(n^{2/3}), respectively.

Cite as

Tatsuya Terao and Ryuhei Mori. Parameterized Quantum Query Algorithms for Graph Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 99:1-99:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{terao_et_al:LIPIcs.ESA.2024.99,
  author =	{Terao, Tatsuya and Mori, Ryuhei},
  title =	{{Parameterized Quantum Query Algorithms for Graph Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{99:1--99:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.99},
  URN =		{urn:nbn:de:0030-drops-211707},
  doi =		{10.4230/LIPIcs.ESA.2024.99},
  annote =	{Keywords: Quantum query complexity, parameterized algorithms, vertex cover, matching, kernelization}
}
Document
RANDOM
On the Communication Complexity of Finding a King in a Tournament

Authors: Nikhil S. Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
A tournament is a complete directed graph. A source in a tournament is a vertex that has no in-neighbours (every other vertex is reachable from it via a path of length 1), and a king in a tournament is a vertex v such that every other vertex is reachable from v via a path of length at most 2. It is well known that every tournament has at least one king. In particular, a maximum out-degree vertex is a king. The tasks of finding a king and a maximum out-degree vertex in a tournament has been relatively well studied in the context of query complexity. We study the communication complexity of finding a king, of finding a maximum out-degree vertex, and of finding a source (if it exists) in a tournament, where the edges are partitioned between two players. The following are our main results for n-vertex tournaments: - We show that the communication task of finding a source in a tournament is equivalent to the well-studied Clique vs. Independent Set (CIS) problem on undirected graphs. As a result, known bounds on the communication complexity of CIS [Yannakakis, JCSS'91, Göös, Pitassi, Watson, SICOMP'18] imply a bound of Θ̃(log² n) for finding a source (if it exists, or outputting that there is no source) in a tournament. - The deterministic and randomized communication complexities of finding a king are Θ(n). The quantum communication complexity of finding a king is Θ̃(√n). - The deterministic, randomized, and quantum communication complexities of finding a maximum out-degree vertex are Θ(n log n), Θ̃(n) and Θ̃(√n), respectively. Our upper bounds above hold for all partitions of edges, and the lower bounds for a specific partition of the edges. One of our lower bounds uses a fooling-set based argument, and all our other lower bounds follow from carefully-constructed reductions from Set-Disjointness. An interesting point to note here is that while the deterministic query complexity of finding a king has been open for over two decades [Shen, Sheng, Wu, SICOMP'03], we are able to essentially resolve the complexity of this problem in a model (communication complexity) that is usually harder to analyze than query complexity.

Cite as

Nikhil S. Mande, Manaswi Paraashar, Swagato Sanyal, and Nitin Saurabh. On the Communication Complexity of Finding a King in a Tournament. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 64:1-64:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mande_et_al:LIPIcs.APPROX/RANDOM.2024.64,
  author =	{Mande, Nikhil S. and Paraashar, Manaswi and Sanyal, Swagato and Saurabh, Nitin},
  title =	{{On the Communication Complexity of Finding a King in a Tournament}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{64:1--64:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.64},
  URN =		{urn:nbn:de:0030-drops-210571},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.64},
  annote =	{Keywords: Communication complexity, tournaments, query complexity}
}
Document
Cross Module Quickening - The Curious Case of C Extensions

Authors: Felix Berlakovich and Stefan Brunthaler

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Dynamic programming languages such as Python offer expressive power and programmer productivity at the expense of performance. Although the topic of optimizing Python has received considerable attention over the years, a key obstacle remains elusive: C extensions. Time and again, optimized run-time environments, such as JIT compilers and optimizing interpreters, fall short of optimizing across C extensions, as they cannot reason about the native code hiding underneath. To bridge this gap, we present an analysis of C extensions for Python. The analysis data indicates that C extensions come in different varieties. One such variety is to merely speed up a single thing, such as reading a file and processing it directly in C. Another variety offers broad access through an API, resulting in a domain-specific language realized by function calls. While the former variety of C extensions offer little optimization potential for optimizing run-times, we find that the latter variety does offer considerable optimization potential. This optimization potential rests on dynamic locality that C extensions cannot readily tap. We introduce a new, interpreter-based optimization leveraging this untapped optimization potential called Cross-Module Quickening. The key idea is that C extensions can use an optimization interface to register highly-optimized operations on C extension-specific datatypes. A quickening interpreter uses these information to continuously specialize programs with C extensions. To quantify the attainable performance potential of going beyond C extensions, we demonstrate a concrete instantiation of Cross-Module Quickening for the CPython interpreter and the popular NumPy C extension. We evaluate our implementation with the NPBench benchmark suite and report performance improvements by a factor of up to 2.84.

Cite as

Felix Berlakovich and Stefan Brunthaler. Cross Module Quickening - The Curious Case of C Extensions. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 6:1-6:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berlakovich_et_al:LIPIcs.ECOOP.2024.6,
  author =	{Berlakovich, Felix and Brunthaler, Stefan},
  title =	{{Cross Module Quickening - The Curious Case of C Extensions}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{6:1--6:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.6},
  URN =		{urn:nbn:de:0030-drops-208557},
  doi =		{10.4230/LIPIcs.ECOOP.2024.6},
  annote =	{Keywords: interpreter, optimizations, C extensions, Python}
}
Document
Compiling with Arrays

Authors: David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Linear algebra computations are foundational for neural networks and machine learning, often handled through arrays. While many functional programming languages feature lists and recursion, arrays in linear algebra demand constant-time access and bulk operations. To bridge this gap, some languages represent arrays as (eager) functions instead of lists. In this paper, we connect this idea to a formal logical foundation by interpreting functions as the usual negative types from polarized type theory, and arrays as the corresponding dual positive version of the function type. Positive types are defined to have a single elimination form whose computational interpretation is pattern matching. Just like (positive) product types bind two variables during pattern matching, (positive) array types bind variables with multiplicity during pattern matching. We follow a similar approach for Booleans by introducing conditionally-defined variables. The positive formulation for the array type enables us to combine typed partial evaluation and common subexpression elimination into an elegant algorithm whose result enjoys a property we call maximal fission, which we argue can be beneficial for further optimizations. For this purpose, we present the novel intermediate representation indexed administrative normal form (A_{i}NF), which relies on the formal logical foundation of the positive formulation for the array type to facilitate maximal loop fission and subsequent optimizations. A_{i}NF is normal with regard to commuting conversion for both let-bindings and for-loops, leading to flat and maximally fissioned terms. We mechanize the translation and normalization from a simple surface language to A_{i}NF, establishing that the process terminates, preserves types, and produces maximally fissioned terms.

Cite as

David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini. Compiling with Arrays. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 33:1-33:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{richter_et_al:LIPIcs.ECOOP.2024.33,
  author =	{Richter, David and B\"{o}hler, Timon and Weisenburger, Pascal and Mezini, Mira},
  title =	{{Compiling with Arrays}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{33:1--33:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.33},
  URN =		{urn:nbn:de:0030-drops-208823},
  doi =		{10.4230/LIPIcs.ECOOP.2024.33},
  annote =	{Keywords: array languages, functional programming, domain-specific languages, normalization by evaluation, common subexpression elimination, polarity, positive function type, intrinsic types}
}
Document
Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits

Authors: Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
We systematically investigate quantum algorithms and lower bounds for mean estimation given query access to non-identically distributed samples. On the one hand, we give quantum mean estimators with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random variables. On the other hand, we prove that, in general, it is impossible for any quantum algorithm to achieve quadratic speed-up over the number of classical samples needed to estimate the mean μ, where the samples come from different random variables with mean close to μ. Technically, our quantum algorithms reduce bounded and sub-Gaussian random variables to the Bernoulli case, and use an uncomputation trick to overcome the challenge that direct amplitude estimation does not work with non-identical query access. Our quantum query lower bounds are established by simulating non-identical oracles by parallel oracles, and also by an adversarial method with non-identical oracles. Both results pave the way for proving quantum query lower bounds with non-identical oracles in general, which may be of independent interest.

Cite as

Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong. Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.TQC.2024.9,
  author =	{Hu, Jiachen and Li, Tongyang and Wang, Xinzhao and Xue, Yecheng and Zhang, Chenyi and Zhong, Han},
  title =	{{Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.9},
  URN =		{urn:nbn:de:0030-drops-206791},
  doi =		{10.4230/LIPIcs.TQC.2024.9},
  annote =	{Keywords: Quantum algorithms, Mean estimation, Non-identical samples, Query complexity}
}
Document
A Direct Reduction from the Polynomial to the Adversary Method

Authors: Aleksandrs Belovs

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
The polynomial and the adversary methods are the two main tools for proving lower bounds on query complexity of quantum algorithms. Both methods have found a large number of applications, some problems more suitable for one method, some for the other. It is known though that the adversary method, in its general negative-weighted version, is tight for bounded-error quantum algorithms, whereas the polynomial method is not. By the tightness of the former, for any polynomial lower bound, there ought to exist a corresponding adversary lower bound. However, direct reduction was not known. In this paper, we give a simple and direct reduction from the polynomial method (in the form of a dual polynomial) to the adversary method. This shows that any lower bound in the form of a dual polynomial is actually an adversary lower bound of a specific form.

Cite as

Aleksandrs Belovs. A Direct Reduction from the Polynomial to the Adversary Method. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{belovs:LIPIcs.TQC.2024.11,
  author =	{Belovs, Aleksandrs},
  title =	{{A Direct Reduction from the Polynomial to the Adversary Method}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.11},
  URN =		{urn:nbn:de:0030-drops-206814},
  doi =		{10.4230/LIPIcs.TQC.2024.11},
  annote =	{Keywords: Polynomials, Quantum Adversary Bound}
}
Document
Quantum Delegation with an Off-The-Shelf Device

Authors: Anne Broadbent, Arthur Mehta, and Yuming Zhao

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
Given that reliable cloud quantum computers are becoming closer to reality, the concept of delegation of quantum computations and its verifiability is of central interest. Many models have been proposed, each with specific strengths and weaknesses. Here, we put forth a new model where the client trusts only its classical processing, makes no computational assumptions, and interacts with a quantum server in a single round. In addition, during a set-up phase, the client specifies the size n of the computation and receives an untrusted, off-the-shelf (OTS) quantum device that is used to report the outcome of a single measurement. We show how to delegate polynomial-time quantum computations in the OTS model. This also yields an interactive proof system for all of QMA, which, furthermore, we show can be accomplished in statistical zero-knowledge. This provides the first relativistic (one-round), two-prover zero-knowledge proof system for QMA. As a proof approach, we provide a new self-test for n EPR pairs using only constant-sized Pauli measurements, and show how it provides a new avenue for the use of simulatable codes for local Hamiltonian verification. Along the way, we also provide an enhanced version of a well-known stability result due to Gowers and Hatami and show how it completes a common argument used in self-testing.

Cite as

Anne Broadbent, Arthur Mehta, and Yuming Zhao. Quantum Delegation with an Off-The-Shelf Device. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{broadbent_et_al:LIPIcs.TQC.2024.12,
  author =	{Broadbent, Anne and Mehta, Arthur and Zhao, Yuming},
  title =	{{Quantum Delegation with an Off-The-Shelf Device}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.12},
  URN =		{urn:nbn:de:0030-drops-206824},
  doi =		{10.4230/LIPIcs.TQC.2024.12},
  annote =	{Keywords: Delegated quantum computation, zero-knowledge proofs, device-independence}
}
Document
Quantum Algorithms for Hopcroft’s Problem

Authors: Vladimirs Andrejevs, Aleksandrs Belovs, and Jevgēnijs Vihrovs

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In this work we study quantum algorithms for Hopcroft’s problem which is a fundamental problem in computational geometry. Given n points and n lines in the plane, the task is to determine whether there is a point-line incidence. The classical complexity of this problem is well-studied, with the best known algorithm running in O(n^{4/3}) time, with matching lower bounds in some restricted settings. Our results are two different quantum algorithms with time complexity Õ(n^{5/6}). The first algorithm is based on partition trees and the quantum backtracking algorithm. The second algorithm uses a quantum walk together with a history-independent dynamic data structure for storing line arrangement which supports efficient point location queries. In the setting where the number of points and lines differ, the quantum walk-based algorithm is asymptotically faster. The quantum speedups for the aforementioned data structures may be useful for other geometric problems.

Cite as

Vladimirs Andrejevs, Aleksandrs Belovs, and Jevgēnijs Vihrovs. Quantum Algorithms for Hopcroft’s Problem. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{andrejevs_et_al:LIPIcs.MFCS.2024.9,
  author =	{Andrejevs, Vladimirs and Belovs, Aleksandrs and Vihrovs, Jevg\={e}nijs},
  title =	{{Quantum Algorithms for Hopcroft’s Problem}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.9},
  URN =		{urn:nbn:de:0030-drops-205653},
  doi =		{10.4230/LIPIcs.MFCS.2024.9},
  annote =	{Keywords: Quantum algorithms, Quantum walks, Computational Geometry}
}
Document
Track A: Algorithms, Complexity and Games
Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems

Authors: Serge Gaspers and Jerry Zirui Li

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Let U be a universe on n elements, let k be a positive integer, and let ℱ be a family of (implicitly defined) subsets of U. We consider the problems of partitioning U into k sets from ℱ, covering U with k sets from ℱ, and packing k non-intersecting sets from ℱ into U. Classically, these problems can be solved via inclusion-exclusion in 2ⁿ n^O(1) time [Andreas Björklund et al., 2009]. Quantumly, there are faster algorithms for graph coloring with running time O(1.9140ⁿ) [Kazuya Shimizu and Ryuhei Mori, 2022] and for Set Cover with a small number of sets with running time O(1.7274ⁿ |ℱ|^O(1)) [Andris Ambainis et al., 2019]. In this paper, we give a quantum speedup for Set Partition, Set Cover, and Set Packing whenever there is a classical enumeration algorithm that lends itself to a quadratic quantum speedup, which, for any subinstance on a set X ⊆ U, enumerates at least one member of a k-partition, k-cover, or k-packing (if one exists) restricted to (or projected onto, in the case of k-cover) the set X in c^|X| n^O(1) time with c < 2. Our bounded-error quantum algorithm runs in time (2+c)^{n/2} n^O(1) for Set Partition, Set Cover, and Set Packing. It is obtained by combining three algorithms that have the best running time for some values of c. When c ≤ 1.147899, our algorithm is slightly faster than (2+c)^{n/2} n^O(1); when c approaches 1, it matches the O(1.7274ⁿ |ℱ|^O(1)) running time of [Andris Ambainis et al., 2019] for Set Cover when |ℱ| is subexponential in n. For covering, packing, and partitioning into maximal independent sets, maximal cliques, maximal bicliques, maximal cluster graphs, maximal triangle-free graphs, maximal cographs, maximal claw-free graphs, maximal trivially-perfect graphs, maximal threshold graphs, maximal split graphs, maximal line graphs, and maximal induced forests, we obtain bounded-error quantum algorithms with running times ranging from O(1.8554ⁿ) to O(1.9629ⁿ). Packing and covering by maximal induced matchings can be done quantumly in O(1.8934ⁿ) time. For Graph Coloring (covering with k maximal independent sets), we further improve the running time to O(1.7956ⁿ) by leveraging faster algorithms for coloring with a small number of colors to better balance our divide-and-conquer steps. For Domatic Number (packing k minimal dominating sets), we obtain a O((2-ε)ⁿ) running time for some ε > 0. Several of our results should be of interest to proponents of classical computing: - We present an inclusion-exclusion algorithm with running time O^*(∑_{i=0}^⌊αn⌋ binom(n,i)), which determines, for each X ⊆ U of size at most α n, 0 ≤ α ≤ 1, whether (X,ℱ) has a k-cover, k-partition, or k-packing. This running time is best-possible, up to polynomial factors. - We prove that for any linear-sized vertex subset X ⊆ V of a graph G = (V,E), the number of minimal dominating sets of G that are subsets of X is O((2-ε)^|X|) for some ε > 0.

Cite as

Serge Gaspers and Jerry Zirui Li. Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 69:1-69:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gaspers_et_al:LIPIcs.ICALP.2024.69,
  author =	{Gaspers, Serge and Li, Jerry Zirui},
  title =	{{Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{69:1--69:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.69},
  URN =		{urn:nbn:de:0030-drops-202124},
  doi =		{10.4230/LIPIcs.ICALP.2024.69},
  annote =	{Keywords: Graph algorithms, quantum algorithms, graph coloring, domatic number, set cover, set partition, set packing}
}
Document
Symmetry and Quantum Query-To-Communication Simulation

Authors: Sourav Chakraborty, Arkadev Chattopadhyay, Peter Høyer, Nikhil S. Mande, Manaswi Paraashar, and Ronald de Wolf

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
Buhrman, Cleve and Wigderson (STOC'98) showed that for every Boolean function f : {-1,1}ⁿ → {-1,1} and G ∈ {AND₂, XOR₂}, the bounded-error quantum communication complexity of the composed function f∘G equals O(𝖰(f) log n), where 𝖰(f) denotes the bounded-error quantum query complexity of f. This is achieved by Alice running the optimal quantum query algorithm for f, using a round of O(log n) qubits of communication to implement each query. This is in contrast with the classical setting, where it is easy to show that 𝖱^{cc}(f∘G) ≤ 2𝖱(f), where 𝖱^{cc} and 𝖱 denote bounded-error communication and query complexity, respectively. Chakraborty et al. (CCC'20) exhibited a total function for which the log n overhead in the BCW simulation is required. This established the somewhat surprising fact that quantum reductions are in some cases inherently more expensive than classical reductions. We improve upon their result in several ways. - We show that the log n overhead is not required when f is symmetric (i.e., depends only on the Hamming weight of its input), generalizing a result of Aaronson and Ambainis for the Set-Disjointness function (Theory of Computing'05). Our upper bound assumes a shared entangled state, though for most symmetric functions the assumed number of entangled qubits is less than the communication and hence could be part of the communication. - In order to prove the above, we design an efficient distributed version of noisy amplitude amplification that allows us to prove the result when f is the OR function. This also provides a different, and arguably simpler, proof of Aaronson and Ambainis’s O(√n) communication upper bound for Set-Disjointness. - In view of our first result above, one may ask whether the log n overhead in the BCW simulation can be avoided even when f is transitive, which is a weaker notion of symmetry. We give a strong negative answer by showing that the log n overhead is still necessary for some transitive functions even when we allow the quantum communication protocol an error probability that can be arbitrarily close to 1/2 (this corresponds to the unbounded-error model of communication). - We also give, among other things, a general recipe to construct functions for which the log n overhead is required in the BCW simulation in the bounded-error communication model, even if the parties are allowed to share an arbitrary prior entangled state for free.

Cite as

Sourav Chakraborty, Arkadev Chattopadhyay, Peter Høyer, Nikhil S. Mande, Manaswi Paraashar, and Ronald de Wolf. Symmetry and Quantum Query-To-Communication Simulation. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 20:1-20:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.STACS.2022.20,
  author =	{Chakraborty, Sourav and Chattopadhyay, Arkadev and H{\o}yer, Peter and Mande, Nikhil S. and Paraashar, Manaswi and de Wolf, Ronald},
  title =	{{Symmetry and Quantum Query-To-Communication Simulation}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{20:1--20:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.20},
  URN =		{urn:nbn:de:0030-drops-158309},
  doi =		{10.4230/LIPIcs.STACS.2022.20},
  annote =	{Keywords: Classical and quantum communication complexity, query-to-communication-simulation, quantum computing}
}
Document
Bounding Quantum-Classical Separations for Classes of Nonlocal Games

Authors: Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1/m + (m-1)/m t^{1-t}. Secondly, for free XOR games, in which the input distribution is of product form, we show beta(G) >= beta^*(G)^{2^t} where beta(G) and beta^*(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1-epsilon then the classical value is at least 1-O(sqrt{epsilon log k}) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms.

Cite as

Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee. Bounding Quantum-Classical Separations for Classes of Nonlocal Games. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 12:1-12:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bannink_et_al:LIPIcs.STACS.2019.12,
  author =	{Bannink, Tom and Bri\"{e}t, Jop and Buhrman, Harry and Labib, Farrokh and Lee, Troy},
  title =	{{Bounding Quantum-Classical Separations for Classes of Nonlocal Games}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{12:1--12:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.12},
  URN =		{urn:nbn:de:0030-drops-102512},
  doi =		{10.4230/LIPIcs.STACS.2019.12},
  annote =	{Keywords: Nonlocal games, communication complexity, bounded separations, semidefinite programming, pseudorandomness, Gowers norms}
}
Document
Provably Secure Key Establishment Against Quantum Adversaries

Authors: Aleksandrs Belovs, Gilles Brassard, Peter Høyer, Marc Kaplan, Sophie Laplante, and Louis Salvail

Published in: LIPIcs, Volume 73, 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)


Abstract
At Crypto 2011, some of us had proposed a family of cryptographic protocols for key establishment capable of protecting quantum and classical legitimate parties unconditionally against a quantum eavesdropper in the query complexity model. Unfortunately, our security proofs were unsatisfactory from a cryptographically meaningful perspective because they were sound only in a worst-case scenario. Here, we extend our results and prove that for any \eps > 0, there is a classical protocol that allows the legitimate parties to establish a common key after O(N) expected queries to a random oracle, yet any quantum eavesdropper will have a vanishing probability of learning their key after O(N^(1.5-\eps)) queries to the same oracle. The vanishing probability applies to a typical run of the protocol. If we allow the legitimate parties to use a quantum computer as well, their advantage over the quantum eavesdropper becomes arbitrarily close to the quadratic advantage that classical legitimate parties enjoyed over classical eavesdroppers in the seminal 1974 work of Ralph Merkle. Along the way, we develop new tools to give lower bounds on the number of quantum queries required to distinguish two probability distributions. This method in itself could have multiple applications in cryptography. We use it here to study average-case quantum query complexity, for which we develop a new composition theorem of independent interest.

Cite as

Aleksandrs Belovs, Gilles Brassard, Peter Høyer, Marc Kaplan, Sophie Laplante, and Louis Salvail. Provably Secure Key Establishment Against Quantum Adversaries. In 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 73, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{belovs_et_al:LIPIcs.TQC.2017.3,
  author =	{Belovs, Aleksandrs and Brassard, Gilles and H{\o}yer, Peter and Kaplan, Marc and Laplante, Sophie and Salvail, Louis},
  title =	{{Provably Secure Key Establishment Against Quantum Adversaries}},
  booktitle =	{12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-034-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{73},
  editor =	{Wilde, Mark M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2017.3},
  URN =		{urn:nbn:de:0030-drops-85816},
  doi =		{10.4230/LIPIcs.TQC.2017.3},
  annote =	{Keywords: Merkle puzzles, Key establishment schemes, Quantum cryptography, Adversary method, Average-case analysis}
}
  • Refine by Author
  • 3 Belovs, Aleksandrs
  • 3 Høyer, Peter
  • 2 Mande, Nikhil S.
  • 2 Paraashar, Manaswi
  • 1 Andrejevs, Vladimirs
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Quantum complexity theory
  • 3 Theory of computation → Quantum query complexity
  • 2 Theory of computation → Communication complexity
  • 2 Theory of computation → Distributed algorithms
  • 2 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 3 Quantum algorithms
  • 2 Quantum walks
  • 2 query complexity
  • 2 random walks
  • 1 Adversary method
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 12 2024
  • 2 2017
  • 1 2018
  • 1 2019
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail