Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)
Antonin Callard and Benjamin Hellouin de Menibus. The Aperiodic Domino Problem in Higher Dimension. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 19:1-19:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
@InProceedings{callard_et_al:LIPIcs.STACS.2022.19, author = {Callard, Antonin and Hellouin de Menibus, Benjamin}, title = {{The Aperiodic Domino Problem in Higher Dimension}}, booktitle = {39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)}, pages = {19:1--19:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-222-8}, ISSN = {1868-8969}, year = {2022}, volume = {219}, editor = {Berenbrink, Petra and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.19}, URN = {urn:nbn:de:0030-drops-158296}, doi = {10.4230/LIPIcs.STACS.2022.19}, annote = {Keywords: Subshift, periodicity, aperiodicity, domino problem, subshift of finite type, sofic subshift, effective subshift, tilings, computability} }
Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Antonin Callard and Pascal Vanier. Computational Characterization of Surface Entropies for ℤ² Subshifts of Finite Type. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 122:1-122:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
@InProceedings{callard_et_al:LIPIcs.ICALP.2021.122, author = {Callard, Antonin and Vanier, Pascal}, title = {{Computational Characterization of Surface Entropies for \mathbb{Z}² Subshifts of Finite Type}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {122:1--122:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.122}, URN = {urn:nbn:de:0030-drops-141914}, doi = {10.4230/LIPIcs.ICALP.2021.122}, annote = {Keywords: surface entropy, arithmetical hierarchy of real numbers, 2D subshifts, symbolic dynamics} }
Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Anael Grandjean, Benjamin Hellouin de Menibus, and Pascal Vanier. Aperiodic Points in Z²-subshifts. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 128:1-128:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
@InProceedings{grandjean_et_al:LIPIcs.ICALP.2018.128, author = {Grandjean, Anael and Hellouin de Menibus, Benjamin and Vanier, Pascal}, title = {{Aperiodic Points in Z²-subshifts}}, booktitle = {45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)}, pages = {128:1--128:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-076-7}, ISSN = {1868-8969}, year = {2018}, volume = {107}, editor = {Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.128}, URN = {urn:nbn:de:0030-drops-91323}, doi = {10.4230/LIPIcs.ICALP.2018.128}, annote = {Keywords: Subshifts of finite type, Wang tiles, periodicity, aperiodicity, computability, tilings} }
Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)
Martin Delacourt and Benjamin Hellouin de Ménibus. Construction of mu-Limit Sets of Two-dimensional Cellular Automata. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 262-274, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)
@InProceedings{delacourt_et_al:LIPIcs.STACS.2015.262, author = {Delacourt, Martin and Hellouin de M\'{e}nibus, Benjamin}, title = {{Construction of mu-Limit Sets of Two-dimensional Cellular Automata}}, booktitle = {32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)}, pages = {262--274}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-78-1}, ISSN = {1868-8969}, year = {2015}, volume = {30}, editor = {Mayr, Ernst W. and Ollinger, Nicolas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.262}, URN = {urn:nbn:de:0030-drops-49197}, doi = {10.4230/LIPIcs.STACS.2015.262}, annote = {Keywords: cellular automata, dynamical systems, mu-limit sets, subshifts, measures} }
Feedback for Dagstuhl Publishing