4 Search Results for "Hu, William"


Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:30},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
Arithmetic Expression Construction

Authors: Leo Alcock, Sualeh Asif, Jeffrey Bosboom, Josh Brunner, Charlotte Chen, Erik D. Demaine, Rogers Epstein, Adam Hesterberg, Lior Hirschfeld, William Hu, Jayson Lynch, Sarah Scheffler, and Lillian Zhang

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
When can n given numbers be combined using arithmetic operators from a given subset of {+,-,×,÷} to obtain a given target number? We study three variations of this problem of Arithmetic Expression Construction: when the expression (1) is unconstrained; (2) has a specified pattern of parentheses and operators (and only the numbers need to be assigned to blanks); or (3) must match a specified ordering of the numbers (but the operators and parenthesization are free). For each of these variants, and many of the subsets of {+,-,×,÷}, we prove the problem NP-complete, sometimes in the weak sense and sometimes in the strong sense. Most of these proofs make use of a rational function framework which proves equivalence of these problems for values in rational functions with values in positive integers.

Cite as

Leo Alcock, Sualeh Asif, Jeffrey Bosboom, Josh Brunner, Charlotte Chen, Erik D. Demaine, Rogers Epstein, Adam Hesterberg, Lior Hirschfeld, William Hu, Jayson Lynch, Sarah Scheffler, and Lillian Zhang. Arithmetic Expression Construction. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 12:1-12:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alcock_et_al:LIPIcs.ISAAC.2020.12,
  author =	{Alcock, Leo and Asif, Sualeh and Bosboom, Jeffrey and Brunner, Josh and Chen, Charlotte and Demaine, Erik D. and Epstein, Rogers and Hesterberg, Adam and Hirschfeld, Lior and Hu, William and Lynch, Jayson and Scheffler, Sarah and Zhang, Lillian},
  title =	{{Arithmetic Expression Construction}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.12},
  URN =		{urn:nbn:de:0030-drops-133568},
  doi =		{10.4230/LIPIcs.ISAAC.2020.12},
  annote =	{Keywords: Hardness, algebraic complexity, expression trees}
}
Document
Utility-Based Scheduling of (m,k)-firm Real-Time Tasks - New Empirical Results

Authors: Florian Kluge

Published in: LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1


Abstract
The concept of a firm real-time task implies the notion of a firm deadline that should not be missed by the jobs of this task. If a deadline miss occurs, the concerned job yields no value to the system. For some applications domains, this restrictive notion can be relaxed. For example, robust control systems can tolerate that single executions of a control loop miss their deadlines, and still yield an acceptable behaviour. Thus, systems can be developed under more optimistic assumptions, e.g. by allowing overloads. However, care must be taken that deadline misses do not accumulate. This restriction can be expressed by the model of (m,k)-firm real-time tasks that require that from any k consecutive jobs at least m are executed successfully. In this article, we extend our prior work on the MKU scheduling heuristic. MKU uses history-cognisant utility functions as means for making decisions in overload situations. We present new theoretical results on MKU and on other schedulers for (m,k)-firm real-time tasks. Based on extensive simulations, we assess the performance of these schedulers. The results allow us to identify task set characteristics that can be used as guidelines for choosing a scheduler for a concrete use case.

Cite as

Florian Kluge. Utility-Based Scheduling of (m,k)-firm Real-Time Tasks - New Empirical Results. In LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1, pp. 02:1-02:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{kluge:LITES-v004-i001-a002,
  author =	{Kluge, Florian},
  title =	{{Utility-Based Scheduling of (m,k)-firm Real-Time Tasks - New Empirical Results}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{02:1--02:25},
  ISSN =	{2199-2002},
  year =	{2017},
  volume =	{4},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v004-i001-a002},
  doi =		{10.4230/LITES-v004-i001-a002},
  annote =	{Keywords: Real-time Scheduling, (m, k)-Firm Real-Time Tasks}
}
Document
Modeling Power Consumption and Temperature in TLM Models

Authors: Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
Many techniques and tools exist to estimate the power consumption and the temperature map of a chip. These tools help the hardware designers develop power efficient chips in the presence of temperature constraints. For this task, the application can be ignored or at least abstracted by some high level scenarios; at this stage, the actual embedded software is generally not available yet.However, after the hardware is defined, the embedded software can still have a significant influence on the power consumption; i.e., two implementations of the same application can consume more or less power. Moreover, the actual software power manager ensuring the temperature constraints, usually by acting dynamically on the voltage and frequency, must itself be validated. Validating such power management policy requires a model of both actuators and sensors, hence a closed-loop simulation of the functional model with a non-functional one.In this paper, we present and compare several tools to simulate the power and thermal behavior of a chip together with its functionality. We explore several levels of abstraction and study the impact on the precision of the analysis.

Cite as

Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi. Modeling Power Consumption and Temperature in TLM Models. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 03:1-03:29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{moy_et_al:LITES-v003-i001-a003,
  author =	{Moy, Matthieu and Helmstetter, Claude and Bouhadiba, Tayeb and Maraninchi, Florence},
  title =	{{Modeling Power Consumption and Temperature in TLM Models}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:29},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a003},
  doi =		{10.4230/LITES-v003-i001-a003},
  annote =	{Keywords: Power consumption, Temperature control, Virtual prototype, SystemC, Transactional modeling}
}
  • Refine by Author
  • 1 Alcock, Leo
  • 1 Asif, Sualeh
  • 1 Bosboom, Jeffrey
  • 1 Bouhadiba, Tayeb
  • 1 Brunner, Josh
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Hardware → Chip-level power issues
  • 1 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Scheduling algorithms

  • Refine by Keyword
  • 1 (m
  • 1 Convolutional Neural Networks
  • 1 Hardness
  • 1 Hardware Modeling
  • 1 Optimization
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail