16 Search Results for "Itsykson, Dmitry"


Document
On Limits of Symbolic Approach to SAT Solving

Authors: Dmitry Itsykson and Sergei Ovcharov

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
We study the symbolic approach to the propositional satisfiability problem proposed by Aguirre and Vardi in 2001 based on OBDDs and symbolic quantifier elimination. We study the theoretical limitations of the most general version of this approach where it is allowed to dynamically change variable order in OBDD. We refer to algorithms based on this approach as OBDD(∧, ∃, reordering) algorithms. We prove the first exponential lower bound of OBDD(∧, ∃, reordering) algorithms on unsatisfiable formulas, and give an example of formulas having short tree-like resolution proofs that are exponentially hard for OBDD(∧, ∃, reordering) algorithms. We also present the first exponential lower bound for natural formulas with clear combinatorial meaning: every OBDD(∧, ∃, reordering) algorithm runs exponentially long on the binary pigeonhole principle BPHP^{n+1}_n.

Cite as

Dmitry Itsykson and Sergei Ovcharov. On Limits of Symbolic Approach to SAT Solving. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.SAT.2024.19,
  author =	{Itsykson, Dmitry and Ovcharov, Sergei},
  title =	{{On Limits of Symbolic Approach to SAT Solving}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.19},
  URN =		{urn:nbn:de:0030-drops-205415},
  doi =		{10.4230/LIPIcs.SAT.2024.19},
  annote =	{Keywords: Symbolic quantifier elimination, OBDD, lower bounds, tree-like resolution, proof complexity, error-correcting codes, binary pigeonhole principle}
}
Document
Exponential Separation Between Powers of Regular and General Resolution over Parities

Authors: Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity. Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.

Cite as

Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. Exponential Separation Between Powers of Regular and General Resolution over Parities. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 23:1-23:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.CCC.2024.23,
  author =	{Bhattacharya, Sreejata Kishor and Chattopadhyay, Arkadev and Dvo\v{r}\'{a}k, Pavel},
  title =	{{Exponential Separation Between Powers of Regular and General Resolution over Parities}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{23:1--23:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23},
  URN =		{urn:nbn:de:0030-drops-204191},
  doi =		{10.4230/LIPIcs.CCC.2024.23},
  annote =	{Keywords: Proof Complexity, Regular Reslin, Branching Programs, Lifting}
}
Document
OBDD(Join) Proofs Cannot Be Balanced

Authors: Sergei Ovcharov

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We study OBDD-based propositional proof systems introduced in 2004 by Atserias, Kolaitis, and Vardi that prove the unsatisfiability of a CNF formula by deduction of an identically false OBDD from OBDDs representing clauses of the initial formula. We consider a proof system OBDD(∧) that uses only the conjunction (join) rule and a proof system OBDD(∧, reordering) (introduced in 2017 by Itsykson, Knop, Romashchenko, and Sokolov) that uses the conjunction (join) rule and the rule that allows changing the order of variables in OBDD. We study whether these systems can be balanced i.e. every refutation of size S can be reassembled into a refutation of depth O(log S) with at most a polynomial-size increase. We construct a family of unsatisfiable CNF formulas F_n such that F_n has a polynomial-size tree-like OBDD(∧) refutation of depth poly(n) and for arbitrary OBDD(∧, reordering) refutation Π of F_n for every α ∈ (0,1) the following trade-off holds: either the size of Π is 2^Ω(n^α) or the depth of Π is Ω(n^{1-α}). As a corollary of the trade-offs, we get that OBDD(∧) and OBDD(∧, reordering) proofs cannot be balanced.

Cite as

Sergei Ovcharov. OBDD(Join) Proofs Cannot Be Balanced. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 72:1-72:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ovcharov:LIPIcs.MFCS.2023.72,
  author =	{Ovcharov, Sergei},
  title =	{{OBDD(Join) Proofs Cannot Be Balanced}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{72:1--72:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.72},
  URN =		{urn:nbn:de:0030-drops-186065},
  doi =		{10.4230/LIPIcs.MFCS.2023.72},
  annote =	{Keywords: Proof complexity, OBDD, lower bounds, depth of proofs}
}
Document
Automating OBDD proofs is NP-hard

Authors: Dmitry Itsykson and Artur Riazanov

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We prove that the proof system OBDD(∧, weakening) is not automatable unless P = NP. The proof is based upon the celebrated result of [Albert Atserias and Moritz Müller, 2019] about the hardness of automatability for resolution. The heart of the proof is lifting with multi-output indexing gadget from resolution block-width to dag-like multiparty number-in-hand communication protocol size with o(n) parties, where n is the number of variables in the non-lifted formula. A similar lifting theorem for protocols with n+1 participants was proved by [Göös et al., 2020] to establish the hardness of automatability result for Cutting Planes.

Cite as

Dmitry Itsykson and Artur Riazanov. Automating OBDD proofs is NP-hard. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 59:1-59:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.MFCS.2022.59,
  author =	{Itsykson, Dmitry and Riazanov, Artur},
  title =	{{Automating OBDD proofs is NP-hard}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{59:1--59:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.59},
  URN =		{urn:nbn:de:0030-drops-168575},
  doi =		{10.4230/LIPIcs.MFCS.2022.59},
  annote =	{Keywords: proof complexity, OBDD, automatability, lifting, dag-like communication}
}
Document
Tight Bounds for Tseitin Formulas

Authors: Dmitry Itsykson, Artur Riazanov, and Petr Smirnov

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
We show that for any connected graph G the size of any regular resolution or OBDD(∧, reordering) refutation of a Tseitin formula based on G is at least 2^Ω(tw(G)), where tw(G) is the treewidth of G. These lower bounds improve upon the previously known bounds and, moreover, they are tight. For both of the proof systems, there are constructive upper bounds that almost match the obtained lower bounds, hence the class of Tseitin formulas is almost automatable for regular resolution and for OBDD(∧, reordering).

Cite as

Dmitry Itsykson, Artur Riazanov, and Petr Smirnov. Tight Bounds for Tseitin Formulas. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.SAT.2022.6,
  author =	{Itsykson, Dmitry and Riazanov, Artur and Smirnov, Petr},
  title =	{{Tight Bounds for Tseitin Formulas}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.6},
  URN =		{urn:nbn:de:0030-drops-166805},
  doi =		{10.4230/LIPIcs.SAT.2022.6},
  annote =	{Keywords: Proof complexity, Tseitin formulas, treewidth, resolution, OBDD-based proof systems}
}
Document
Proof Complexity of Natural Formulas via Communication Arguments

Authors: Dmitry Itsykson and Artur Riazanov

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
A canonical communication problem Search(φ) is defined for every unsatisfiable CNF φ: an assignment to the variables of φ is partitioned among the communicating parties, they are to find a clause of φ falsified by this assignment. Lower bounds on the randomized k-party communication complexity of Search(φ) in the number-on-forehead (NOF) model imply tree-size lower bounds, rank lower bounds, and size-space tradeoffs for the formula φ in the semantic proof system T^{cc}(k,c) that operates with proof lines that can be computed by k-party randomized communication protocol using at most c bits of communication [Göös and Pitassi, 2014]. All known lower bounds on Search(φ) (e.g. [Beame et al., 2007; Göös and Pitassi, 2014; Russell Impagliazzo et al., 1994]) are realized on ad-hoc formulas φ (i.e. they were introduced specifically for these lower bounds). We introduce a new communication complexity approach that allows establishing proof complexity lower bounds for natural formulas. First, we demonstrate our approach for two-party communication and apply it to the proof system Res(⊕) that operates with disjunctions of linear equalities over 𝔽₂ [Dmitry Itsykson and Dmitry Sokolov, 2014]. Let a formula PM_G encode that a graph G has a perfect matching. If G has an odd number of vertices, then PM_G has a tree-like Res(⊕)-refutation of a polynomial-size [Dmitry Itsykson and Dmitry Sokolov, 2014]. It was unknown whether this is the case for graphs with an even number of vertices. Using our approach we resolve this question and show a lower bound 2^{Ω(n)} on size of tree-like Res(⊕)-refutations of PM_{K_{n+2,n}}. Then we apply our approach for k-party communication complexity in the NOF model and obtain a Ω(1/k 2^{n/2k - 3k/2}) lower bound on the randomized k-party communication complexity of Search(BPHP^{M}_{2ⁿ}) w.r.t. to some natural partition of the variables, where BPHP^{M}_{2ⁿ} is the bit pigeonhole principle and M = 2ⁿ+2^{n(1-1/k)}. In particular, our result implies that the bit pigeonhole requires exponential tree-like Th(k) proofs, where Th(k) is the semantic proof system operating with polynomial inequalities of degree at most k and k = 𝒪(log^{1-ε} n) for some ε > 0. We also show that BPHP^{2ⁿ+1}_{2ⁿ} superpolynomially separates tree-like Th(log^{1-ε} m) from tree-like Th(log m), where m is the number of variables in the refuted formula.

Cite as

Dmitry Itsykson and Artur Riazanov. Proof Complexity of Natural Formulas via Communication Arguments. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 3:1-3:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.CCC.2021.3,
  author =	{Itsykson, Dmitry and Riazanov, Artur},
  title =	{{Proof Complexity of Natural Formulas via Communication Arguments}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{3:1--3:34},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.3},
  URN =		{urn:nbn:de:0030-drops-142773},
  doi =		{10.4230/LIPIcs.CCC.2021.3},
  annote =	{Keywords: bit pigeonhole principle, disjointness, multiparty communication complexity, perfect matching, proof complexity, randomized communication complexity, Resolution over linear equations, tree-like proofs}
}
Document
Branching Programs with Bounded Repetitions and Flow Formulas

Authors: Anastasia Sofronova and Dmitry Sokolov

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Restricted branching programs capture various complexity measures like space in Turing machines or length of proofs in proof systems. In this paper, we focus on the application in the proof complexity that was discovered by Lovasz et al. [László Lovász et al., 1995] who showed the equivalence between regular Resolution and read-once branching programs for "unsatisfied clause search problem" (Search_φ). This connection is widely used, in particular, in the recent breakthrough result about the Clique problem in regular Resolution by Atserias et al. [Albert Atserias et al., 2018]. We study the branching programs with bounded repetitions, so-called (1,+k)-BPs (Sieling [Detlef Sieling, 1996]) in application to the Search_φ problem. On the one hand, it is a natural generalization of read-once branching programs. On the other hand, this model gives a powerful proof system that can efficiently certify the unsatisfiability of a wide class of formulas that is hard for Resolution (Knop [Alexander Knop, 2017]). We deal with Search_φ that is "relatively easy" compared to all known hard examples for the (1,+k)-BPs. We introduce the first technique for proving exponential lower bounds for the (1,+k)-BPs on Search_φ. To do it we combine a well-known technique for proving lower bounds on the size of branching programs [Detlef Sieling, 1996; Detlef Sieling and Ingo Wegener, 1994; Stasys Jukna and Alexander A. Razborov, 1998] with the modification of the "closure" technique [Michael Alekhnovich et al., 2004; Michael Alekhnovich and Alexander A. Razborov, 2003]. In contrast with most Resolution lower bounds, our technique uses not only "local" properties of the formula, but also a "global" structure. Our hard examples are based on the Flow formulas introduced in [Michael Alekhnovich and Alexander A. Razborov, 2003].

Cite as

Anastasia Sofronova and Dmitry Sokolov. Branching Programs with Bounded Repetitions and Flow Formulas. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{sofronova_et_al:LIPIcs.CCC.2021.17,
  author =	{Sofronova, Anastasia and Sokolov, Dmitry},
  title =	{{Branching Programs with Bounded Repetitions and Flow Formulas}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.17},
  URN =		{urn:nbn:de:0030-drops-142915},
  doi =		{10.4230/LIPIcs.CCC.2021.17},
  annote =	{Keywords: proof complexity, branching programs, bounded repetitions, lower bounds}
}
Document
A Lower Bound for Polynomial Calculus with Extension Rule

Authors: Yaroslav Alekseev

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
A major proof complexity problem is to prove a superpolynomial lower bound on the length of Frege proofs of arbitrary depth. A more general question is to prove an Extended Frege lower bound. Surprisingly, proving such bounds turns out to be much easier in the algebraic setting. In this paper, we study a proof system that can simulate Extended Frege: an extension of the Polynomial Calculus proof system where we can take a square root and introduce new variables that are equivalent to arbitrary depth algebraic circuits. We prove that an instance of the subset-sum principle, the binary value principle 1 + x₁ + 2 x₂ + … + 2^{n-1} x_n = 0 (BVP_n), requires refutations of exponential bit size over ℚ in this system. Part and Tzameret [Fedor Part and Iddo Tzameret, 2020] proved an exponential lower bound on the size of Res-Lin (Resolution over linear equations [Ran Raz and Iddo Tzameret, 2008]) refutations of BVP_n. We show that our system p-simulates Res-Lin and thus we get an alternative exponential lower bound for the size of Res-Lin refutations of BVP_n.

Cite as

Yaroslav Alekseev. A Lower Bound for Polynomial Calculus with Extension Rule. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{alekseev:LIPIcs.CCC.2021.21,
  author =	{Alekseev, Yaroslav},
  title =	{{A Lower Bound for Polynomial Calculus with Extension Rule}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.21},
  URN =		{urn:nbn:de:0030-drops-142959},
  doi =		{10.4230/LIPIcs.CCC.2021.21},
  annote =	{Keywords: proof complexity, algebraic proofs, polynomial calculus}
}
Document
Resolution with Counting: Dag-Like Lower Bounds and Different Moduli

Authors: Fedor Part and Iddo Tzameret

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Resolution over linear equations is a natural extension of the popular resolution refutation system, augmented with the ability to carry out basic counting. Denoted Res(lin_R), this refutation system operates with disjunctions of linear equations with boolean variables over a ring R, to refute unsatisfiable sets of such disjunctions. Beginning in the work of [Ran Raz and Iddo Tzameret, 2008], through the work of [Dmitry Itsykson and Dmitry Sokolov, 2014] which focused on tree-like lower bounds, this refutation system was shown to be fairly strong. Subsequent work (cf. [Jan Krajícek, 2017; Dmitry Itsykson and Dmitry Sokolov, 2014; Jan Krajícek and Igor Carboni Oliveira, 2018; Michal Garlik and Lezsek Kołodziejczyk, 2018]) made it evident that establishing lower bounds against general Res(lin_R) refutations is a challenging and interesting task since the system captures a "minimal" extension of resolution with counting gates for which no super-polynomial lower bounds are known to date. We provide the first super-polynomial size lower bounds on general (dag-like) resolution over linear equations refutations in the large characteristic regime. In particular we prove that the subset-sum principle 1+ x_1 + ̇s +2^n x_n = 0 requires refutations of exponential-size over ℚ. Our proof technique is nontrivial and novel: roughly speaking, we show that under certain conditions every refutation of a subset-sum instance f=0, where f is a linear polynomial over ℚ, must pass through a fat clause containing an equation f=α for each α in the image of f under boolean assignments. We develop a somewhat different approach to prove exponential lower bounds against tree-like refutations of any subset-sum instance that depends on n variables, hence also separating tree-like from dag-like refutations over the rationals. We then turn to the finite fields regime, showing that the work of Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014] who obtained tree-like lower bounds over ?_2 can be carried over and extended to every finite field. We establish new lower bounds and separations as follows: (i) for every pair of distinct primes p,q, there exist CNF formulas with short tree-like refutations in Res(lin_{?_p}) that require exponential-size tree-like Res(lin_{?_q}) refutations; (ii) random k-CNF formulas require exponential-size tree-like Res(lin_{?_p}) refutations, for every prime p and constant k; and (iii) exponential-size lower bounds for tree-like Res(lin_?) refutations of the pigeonhole principle, for every field ?.

Cite as

Fedor Part and Iddo Tzameret. Resolution with Counting: Dag-Like Lower Bounds and Different Moduli. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 19:1-19:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{part_et_al:LIPIcs.ITCS.2020.19,
  author =	{Part, Fedor and Tzameret, Iddo},
  title =	{{Resolution with Counting: Dag-Like Lower Bounds and Different Moduli}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{19:1--19:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.19},
  URN =		{urn:nbn:de:0030-drops-117041},
  doi =		{10.4230/LIPIcs.ITCS.2020.19},
  annote =	{Keywords: Proof complexity, concrete lower bounds, resolution, satisfiability, combinatorics}
}
Document
Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs

Authors: Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires proofs of size 2^{tw(G)^{Omega(1/d)}} in depth-d Frege systems for d<(K log n)/(log log n), where tw(G) is the treewidth of G. This extends Håstad recent lower bound for the grid graph to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2^{tw(G)^{O(1/d)}} poly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution.

Cite as

Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova. Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{galesi_et_al:LIPIcs.MFCS.2019.49,
  author =	{Galesi, Nicola and Itsykson, Dmitry and Riazanov, Artur and Sofronova, Anastasia},
  title =	{{Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.49},
  URN =		{urn:nbn:de:0030-drops-109932},
  doi =		{10.4230/LIPIcs.MFCS.2019.49},
  annote =	{Keywords: Tseitin formula, treewidth, AC0-Frege}
}
Document
Reordering Rule Makes OBDD Proof Systems Stronger

Authors: Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
Atserias, Kolaitis, and Vardi showed that the proof system of Ordered Binary Decision Diagrams with conjunction and weakening, OBDD(^, weakening), simulates CP^* (Cutting Planes with unary coefficients). We show that OBDD(^, weakening) can give exponentially shorter proofs than dag-like cutting planes. This is proved by showing that the Clique-Coloring tautologies have polynomial size proofs in the OBDD(^, weakening) system. The reordering rule allows changing the variable order for OBDDs. We show that OBDD(^, weakening, reordering) is strictly stronger than OBDD(^, weakening). This is proved using the Clique-Coloring tautologies, and by transforming tautologies using coded permutations and orification. We also give CNF formulas which have polynomial size OBDD(^) proofs but require superpolynomial (actually, quasipolynomial size) resolution proofs, and thus we partially resolve an open question proposed by Groote and Zantema. Applying dag-like and tree-like lifting techniques to the mentioned results, we completely analyze which of the systems among CP^*, OBDD(^), OBDD(^, reordering), OBDD(^, weakening) and OBDD(^, weakening, reordering) polynomially simulate each other. For dag-like proof systems, some of our separations are quasipolynomial and some are exponential; for tree-like systems, all of our separations are exponential.

Cite as

Sam Buss, Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Reordering Rule Makes OBDD Proof Systems Stronger. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 16:1-16:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{buss_et_al:LIPIcs.CCC.2018.16,
  author =	{Buss, Sam and Itsykson, Dmitry and Knop, Alexander and Sokolov, Dmitry},
  title =	{{Reordering Rule Makes OBDD Proof Systems Stronger}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.16},
  URN =		{urn:nbn:de:0030-drops-88720},
  doi =		{10.4230/LIPIcs.CCC.2018.16},
  annote =	{Keywords: Proof complexity, OBDD, Tseitin formulas, the Clique-Coloring principle, lifting theorems}
}
Document
Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching Programs

Authors: Ludmila Glinskih and Dmitry Itsykson

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
We consider satisfiable Tseitin formulas TS_{G,c} based on d-regular expanders G with the absolute value of the second largest eigenvalue less than d/3. We prove that any nondeterministic read-once branching program (1-NBP) representing TS_{G,c} has size 2^{\Omega(n)}, where n is the number of vertices in G. It extends the recent result by Itsykson at el. [STACS 2017] from OBDD to 1-NBP. On the other hand it is easy to see that TS_{G,c} can be represented as a read-2 branching program (2-BP) of size O(n), as the negation of a nondeterministic read-once branching program (1-coNBP) of size O(n) and as a CNF formula of size O(n). Thus TS_{G,c} gives the best possible separations (up to a constant in the exponent) between 1-NBP and 2-BP, 1-NBP and 1-coNBP and between 1-NBP and CNF.

Cite as

Ludmila Glinskih and Dmitry Itsykson. Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching Programs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 26:1-26:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{glinskih_et_al:LIPIcs.MFCS.2017.26,
  author =	{Glinskih, Ludmila and Itsykson, Dmitry},
  title =	{{Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching Programs}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{26:1--26:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.26},
  URN =		{urn:nbn:de:0030-drops-80767},
  doi =		{10.4230/LIPIcs.MFCS.2017.26},
  annote =	{Keywords: Tseitin formula, read-once branching program, expander}
}
Document
On OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables

Authors: Dmitry Itsykson, Alexander Knop, Andrey Romashchenko, and Dmitry Sokolov

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)


Abstract
In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based proof systems that additionally contain a rule that allows to change the order in OBDDs. At first we consider a proof system OBDD(and, reordering) that uses the conjunction (join) rule and the rule that allows to change the order. We exponentially separate this proof system from OBDD(and)-proof system that uses only the conjunction rule. We prove two exponential lower bounds on the size of OBDD(and, reordering)-refutations of Tseitin formulas and the pigeonhole principle. The first lower bound was previously unknown even for OBDD(and)-proofs and the second one extends the result of Tveretina et al. from OBDD(and) to OBDD(and, reordering). In 2004 Pan and Vardi proposed an approach to the propositional satisfiability problem based on OBDDs and symbolic quantifier elimination (we denote algorithms based on this approach as OBDD(and, exists)-algorithms. We notice that there exists an OBDD(and, exists)-algorithm that solves satisfiable and unsatisfiable Tseitin formulas in polynomial time. In contrast, we show that there exist formulas representing systems of linear equations over F_2 that are hard for OBDD(and, exists, reordering)-algorithms. Our hard instances are satisfiable formulas representing systems of linear equations over F_2 that correspond to some checksum matrices of error correcting codes.

Cite as

Dmitry Itsykson, Alexander Knop, Andrey Romashchenko, and Dmitry Sokolov. On OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 43:1-43:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.STACS.2017.43,
  author =	{Itsykson, Dmitry and Knop, Alexander and Romashchenko, Andrey and Sokolov, Dmitry},
  title =	{{On OBDD-Based Algorithms and Proof Systems That Dynamically Change Order of Variables}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{43:1--43:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.43},
  URN =		{urn:nbn:de:0030-drops-69914},
  doi =		{10.4230/LIPIcs.STACS.2017.43},
  annote =	{Keywords: Proof complexity, OBDD, error-correcting codes, Tseitin formulas, expanders}
}
Document
Complexity of Distributions and Average-Case Hardness

Authors: Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We address the following question in the average-case complexity: does there exists a language L such that for all easy distributions D the distributional problem (L, D) is easy on the average while there exists some more hard distribution D' such that (L, D') is hard on the average? We consider two complexity measures of distributions: the complexity of sampling and the complexity of computing the distribution function. For the complexity of sampling of distribution, we establish a connection between the above question and the hierarchy theorem for sampling distribution recently studied by Thomas Watson. Using this connection we prove that for every 0 < a < b there exist a language L, an ensemble of distributions D samplable in n^{log^b n} steps and a linear-time algorithm A such that for every ensemble of distribution F that samplable in n^{log^a n} steps, A correctly decides L on all inputs from {0, 1}^n except for a set that has infinitely small F-measure, and for every algorithm B there are infinitely many n such that the set of all elements of {0, 1}^n for which B correctly decides L has infinitely small D-measure. In case of complexity of computing the distribution function we prove the following tight result: for every a > 0 there exist a language L, an ensemble of polynomial-time computable distributions D, and a linear-time algorithm A such that for every computable in n^a steps ensemble of distributions F , A correctly decides L on all inputs from {0, 1}^n except for a set that has F-measure at most 2^{-n/2} , and for every algorithm B there are infinitely many n such that the set of all elements of {0, 1}^n for which B correctly decides L has D-measure at most 2^{-n+1}.

Cite as

Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Complexity of Distributions and Average-Case Hardness. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 38:1-38:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.ISAAC.2016.38,
  author =	{Itsykson, Dmitry and Knop, Alexander and Sokolov, Dmitry},
  title =	{{Complexity of Distributions and Average-Case Hardness}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{38:1--38:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.38},
  URN =		{urn:nbn:de:0030-drops-68083},
  doi =		{10.4230/LIPIcs.ISAAC.2016.38},
  annote =	{Keywords: average-case complexity, hierarchy theorem, sampling distributions, diagonalization}
}
Document
Computational and Proof Complexity of Partial String Avoidability

Authors: Dmitry Itsykson, Alexander Okhotin, and Vsevolod Oparin

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
The partial string avoidability problem, also known as partial word avoidability, is stated as follows: given a finite set of strings with possible ``holes'' (undefined symbols), determine whether there exists any two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this paper establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form (CNF) satisfiability problem (SAT), with each clause having infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting constraints (such as clauses, inequalities, polynomials, etc). Two results on their proof complexity are established. First, there is a particular formula that has a short refutation in Resolution with shift, but requires classical proofs of exponential size (Resolution, Cutting Plane, Polynomial Calculus, etc.). At the same time, exponential lower bounds for shifted versions of classical proof systems are established.

Cite as

Dmitry Itsykson, Alexander Okhotin, and Vsevolod Oparin. Computational and Proof Complexity of Partial String Avoidability. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 51:1-51:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.MFCS.2016.51,
  author =	{Itsykson, Dmitry and Okhotin, Alexander and Oparin, Vsevolod},
  title =	{{Computational and Proof Complexity of Partial String Avoidability}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{51:1--51:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.51},
  URN =		{urn:nbn:de:0030-drops-64637},
  doi =		{10.4230/LIPIcs.MFCS.2016.51},
  annote =	{Keywords: partial strings, partial words, avoidability, proof complexity, PSPACE-completeness}
}
  • Refine by Author
  • 11 Itsykson, Dmitry
  • 4 Riazanov, Artur
  • 4 Sokolov, Dmitry
  • 3 Knop, Alexander
  • 2 Ovcharov, Sergei
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 6 proof complexity
  • 5 OBDD
  • 5 Proof complexity
  • 3 Tseitin formulas
  • 3 lower bounds
  • Show More...

  • Refine by Type
  • 16 document

  • Refine by Publication Year
  • 3 2021
  • 2 2016
  • 2 2017
  • 2 2022
  • 2 2024
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail