32 Search Results for "Jeffery, Stacey"


Volume

LIPIcs, Volume 111

13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018)

TQC 2018, July 16, 2018, Sydney, Australia

Editors: Stacey Jeffery

Document
Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits

Authors: Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
We systematically investigate quantum algorithms and lower bounds for mean estimation given query access to non-identically distributed samples. On the one hand, we give quantum mean estimators with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random variables. On the other hand, we prove that, in general, it is impossible for any quantum algorithm to achieve quadratic speed-up over the number of classical samples needed to estimate the mean μ, where the samples come from different random variables with mean close to μ. Technically, our quantum algorithms reduce bounded and sub-Gaussian random variables to the Bernoulli case, and use an uncomputation trick to overcome the challenge that direct amplitude estimation does not work with non-identical query access. Our quantum query lower bounds are established by simulating non-identical oracles by parallel oracles, and also by an adversarial method with non-identical oracles. Both results pave the way for proving quantum query lower bounds with non-identical oracles in general, which may be of independent interest.

Cite as

Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong. Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hu_et_al:LIPIcs.TQC.2024.9,
  author =	{Hu, Jiachen and Li, Tongyang and Wang, Xinzhao and Xue, Yecheng and Zhang, Chenyi and Zhong, Han},
  title =	{{Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.9},
  URN =		{urn:nbn:de:0030-drops-206791},
  doi =		{10.4230/LIPIcs.TQC.2024.9},
  annote =	{Keywords: Quantum algorithms, Mean estimation, Non-identical samples, Query complexity}
}
Document
Quantum Delegation with an Off-The-Shelf Device

Authors: Anne Broadbent, Arthur Mehta, and Yuming Zhao

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
Given that reliable cloud quantum computers are becoming closer to reality, the concept of delegation of quantum computations and its verifiability is of central interest. Many models have been proposed, each with specific strengths and weaknesses. Here, we put forth a new model where the client trusts only its classical processing, makes no computational assumptions, and interacts with a quantum server in a single round. In addition, during a set-up phase, the client specifies the size n of the computation and receives an untrusted, off-the-shelf (OTS) quantum device that is used to report the outcome of a single measurement. We show how to delegate polynomial-time quantum computations in the OTS model. This also yields an interactive proof system for all of QMA, which, furthermore, we show can be accomplished in statistical zero-knowledge. This provides the first relativistic (one-round), two-prover zero-knowledge proof system for QMA. As a proof approach, we provide a new self-test for n EPR pairs using only constant-sized Pauli measurements, and show how it provides a new avenue for the use of simulatable codes for local Hamiltonian verification. Along the way, we also provide an enhanced version of a well-known stability result due to Gowers and Hatami and show how it completes a common argument used in self-testing.

Cite as

Anne Broadbent, Arthur Mehta, and Yuming Zhao. Quantum Delegation with an Off-The-Shelf Device. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{broadbent_et_al:LIPIcs.TQC.2024.12,
  author =	{Broadbent, Anne and Mehta, Arthur and Zhao, Yuming},
  title =	{{Quantum Delegation with an Off-The-Shelf Device}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.12},
  URN =		{urn:nbn:de:0030-drops-206824},
  doi =		{10.4230/LIPIcs.TQC.2024.12},
  annote =	{Keywords: Delegated quantum computation, zero-knowledge proofs, device-independence}
}
Document
Track A: Algorithms, Complexity and Games
Learning Low-Degree Quantum Objects

Authors: Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in 𝓁₂-distance. We show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels and unitaries can be learned using O(1/ε^d) queries (which is independent of n), (ii) polynomials p:{-1,1}ⁿ → [-1,1] arising from d-query quantum algorithms can be learned from O((1/ε)^d ⋅ log n) many random examples (x,p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d polynomials p:{-1,1}ⁿ → [-1,1] can be learned through O(1/ε^d) queries to a quantum unitary U_p that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded polynomials.

Cite as

Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos. Learning Low-Degree Quantum Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2024.13,
  author =	{Arunachalam, Srinivasan and Dutt, Arkopal and Escudero Guti\'{e}rrez, Francisco and Palazuelos, Carlos},
  title =	{{Learning Low-Degree Quantum Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.13},
  URN =		{urn:nbn:de:0030-drops-201563},
  doi =		{10.4230/LIPIcs.ICALP.2024.13},
  annote =	{Keywords: Tomography}
}
Document
(No) Quantum Space-Time Tradeoff for USTCON

Authors: Simon Apers, Stacey Jeffery, Galina Pass, and Michael Walter

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Undirected st-connectivity is important both for its applications in network problems, and for its theoretical connections with logspace complexity. Classically, a long line of work led to a time-space tradeoff of T = Õ(n²/S) for any S such that S = Ω(log(n)) and S = O(n²/m). Surprisingly, we show that quantumly there is no nontrivial time-space tradeoff: there is a quantum algorithm that achieves both optimal time Õ(n) and space O(log(n)) simultaneously. This improves on previous results, which required either O(log(n)) space and Õ(n^{1.5}) time, or Õ(n) space and time. To complement this, we show that there is a nontrivial time-space tradeoff when given a lower bound on the spectral gap of a corresponding random walk.

Cite as

Simon Apers, Stacey Jeffery, Galina Pass, and Michael Walter. (No) Quantum Space-Time Tradeoff for USTCON. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.ESA.2023.10,
  author =	{Apers, Simon and Jeffery, Stacey and Pass, Galina and Walter, Michael},
  title =	{{(No) Quantum Space-Time Tradeoff for USTCON}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.10},
  URN =		{urn:nbn:de:0030-drops-186636},
  doi =		{10.4230/LIPIcs.ESA.2023.10},
  annote =	{Keywords: Undirected st-connectivity, quantum walks, time-space tradeoff}
}
Document
Robust and Space-Efficient Dual Adversary Quantum Query Algorithms

Authors: Michael Czekanski, Shelby Kimmel, and R. Teal Witter

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The general adversary dual is a powerful tool in quantum computing because it gives a query-optimal bounded-error quantum algorithm for deciding any Boolean function. Unfortunately, the algorithm uses linear qubits in the worst case, and only works if the constraints of the general adversary dual are exactly satisfied. The challenge of improving the algorithm is that it is brittle to arbitrarily small errors since it relies on a reflection over a span of vectors. We overcome this challenge and build a robust dual adversary algorithm that can handle approximately satisfied constraints. As one application of our robust algorithm, we prove that for any Boolean function with polynomially many 1-valued inputs (or in fact a slightly weaker condition) there is a query-optimal algorithm that uses logarithmic qubits. As another application, we prove that numerically derived, approximate solutions to the general adversary dual give a bounded-error quantum algorithm under certain conditions. Further, we show that these conditions empirically hold with reasonable iterations for Boolean functions with small domains. We also develop several tools that may be of independent interest, including a robust approximate spectral gap lemma, a method to compress a general adversary dual solution using the Johnson-Lindenstrauss lemma, and open-source code to find solutions to the general adversary dual.

Cite as

Michael Czekanski, Shelby Kimmel, and R. Teal Witter. Robust and Space-Efficient Dual Adversary Quantum Query Algorithms. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{czekanski_et_al:LIPIcs.ESA.2023.36,
  author =	{Czekanski, Michael and Kimmel, Shelby and Witter, R. Teal},
  title =	{{Robust and Space-Efficient Dual Adversary Quantum Query Algorithms}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.36},
  URN =		{urn:nbn:de:0030-drops-186890},
  doi =		{10.4230/LIPIcs.ESA.2023.36},
  annote =	{Keywords: Quantum Computing, Robust Quantum Algorithms, Johnson-Lindenstrauss Lemma, Span Programs, Query Complexity, Space Complexity}
}
Document
Quantum Algorithm for Path-Edge Sampling

Authors: Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We present a quantum algorithm for sampling an edge on a path between two nodes s and t in an undirected graph given as an adjacency matrix, and show that this can be done in query complexity that is asymptotically the same, up to log factors, as the query complexity of detecting a path between s and t. We use this path sampling algorithm as a subroutine for st-path finding and st-cut-set finding algorithms in some specific cases. Our main technical contribution is an algorithm for generating a quantum state that is proportional to the positive witness vector of a span program.

Cite as

Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum Algorithm for Path-Edge Sampling. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 5:1-5:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jeffery_et_al:LIPIcs.TQC.2023.5,
  author =	{Jeffery, Stacey and Kimmel, Shelby and Piedrafita, Alvaro},
  title =	{{Quantum Algorithm for Path-Edge Sampling}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{5:1--5:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.5},
  URN =		{urn:nbn:de:0030-drops-183151},
  doi =		{10.4230/LIPIcs.TQC.2023.5},
  annote =	{Keywords: Algorithm design and analysis, Query complexity, Graph algorithms, Span program algorithm, Path finding, Path detection}
}
Document
Quantum Cryptanalysis (Dagstuhl Seminar 21421)

Authors: Stacey Jeffery, Michele Mosca, Maria Naya-Plasencia, and Rainer Steinwandt

Published in: Dagstuhl Reports, Volume 11, Issue 9 (2022)


Abstract
This seminar report documents the program and the outcomes of Dagstuhl Seminar 21421 Quantum Cryptanalysis. The seminar took place in a hybrid format in Fall 2021. The report starts out with the motivation and comments on the organization of this instance of the Dagstuhl Seminar series on {Quantum Cryptanalysis}, followed by abstracts of presentations. The presentation abstracts were provided by seminar participants.

Cite as

Stacey Jeffery, Michele Mosca, Maria Naya-Plasencia, and Rainer Steinwandt. Quantum Cryptanalysis (Dagstuhl Seminar 21421). In Dagstuhl Reports, Volume 11, Issue 9, pp. 64-79, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{jeffery_et_al:DagRep.11.9.64,
  author =	{Jeffery, Stacey and Mosca, Michele and Naya-Plasencia, Maria and Steinwandt, Rainer},
  title =	{{Quantum Cryptanalysis (Dagstuhl Seminar 21421)}},
  pages =	{64--79},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{11},
  number =	{9},
  editor =	{Jeffery, Stacey and Mosca, Michele and Naya-Plasencia, Maria and Steinwandt, Rainer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.9.64},
  URN =		{urn:nbn:de:0030-drops-159187},
  doi =		{10.4230/DagRep.11.9.64},
  annote =	{Keywords: computational algebra, post-quantum cryptography, quantum computing, quantum resource estimation}
}
Document
Quantum-Access Security of the Winternitz One-Time Signature Scheme

Authors: Christian Majenz, Chanelle Matadah Manfouo, and Maris Ozols

Published in: LIPIcs, Volume 199, 2nd Conference on Information-Theoretic Cryptography (ITC 2021)


Abstract
Quantum-access security, where an attacker is granted superposition access to secret-keyed functionalities, is a fundamental security model and its study has inspired results in post-quantum security. We revisit, and fill a gap in, the quantum-access security analysis of the Lamport one-time signature scheme (OTS) in the quantum random oracle model (QROM) by Alagic et al. (Eurocrypt 2020). We then go on to generalize the technique to the Winternitz OTS. Along the way, we develop a tool for the analysis of hash chains in the QROM based on the superposition oracle technique by Zhandry (Crypto 2019) which might be of independent interest.

Cite as

Christian Majenz, Chanelle Matadah Manfouo, and Maris Ozols. Quantum-Access Security of the Winternitz One-Time Signature Scheme. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 199, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{majenz_et_al:LIPIcs.ITC.2021.21,
  author =	{Majenz, Christian and Manfouo, Chanelle Matadah and Ozols, Maris},
  title =	{{Quantum-Access Security of the Winternitz One-Time Signature Scheme}},
  booktitle =	{2nd Conference on Information-Theoretic Cryptography (ITC 2021)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-197-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{199},
  editor =	{Tessaro, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.21},
  URN =		{urn:nbn:de:0030-drops-143406},
  doi =		{10.4230/LIPIcs.ITC.2021.21},
  annote =	{Keywords: quantum cryptography, one-time signature schemes, quantum random oracle model, post-quantum cryptography, quantum world, hash-based signatures, information-theoretic security}
}
Document
A Unified Framework of Quantum Walk Search

Authors: Simon Apers, András Gilyén, and Stacey Jeffery

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Many quantum algorithms critically rely on quantum walk search, or the use of quantum walks to speed up search problems on graphs. However, the main results on quantum walk search are scattered over different, incomparable frameworks, such as the hitting time framework, the MNRS framework, and the electric network framework. As a consequence, a number of pieces are currently missing. For example, recent work by Ambainis et al. (STOC'20) shows how quantum walks starting from the stationary distribution can always find elements quadratically faster. In contrast, the electric network framework allows quantum walks to start from an arbitrary initial state, but it only detects marked elements. We present a new quantum walk search framework that unifies and strengthens these frameworks, leading to a number of new results. For example, the new framework effectively finds marked elements in the electric network setting. The new framework also allows to interpolate between the hitting time framework, minimizing the number of walk steps, and the MNRS framework, minimizing the number of times elements are checked for being marked. This allows for a more natural tradeoff between resources. In addition to quantum walks and phase estimation, our new algorithm makes use of quantum fast-forwarding, similar to the recent results by Ambainis et al. This perspective also enables us to derive more general complexity bounds on the quantum walk algorithms, e.g., based on Monte Carlo type bounds of the corresponding classical walk. As a final result, we show how in certain cases we can avoid the use of phase estimation and quantum fast-forwarding, answering an open question of Ambainis et al.

Cite as

Simon Apers, András Gilyén, and Stacey Jeffery. A Unified Framework of Quantum Walk Search. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.STACS.2021.6,
  author =	{Apers, Simon and Gily\'{e}n, Andr\'{a}s and Jeffery, Stacey},
  title =	{{A Unified Framework of Quantum Walk Search}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.6},
  URN =		{urn:nbn:de:0030-drops-136511},
  doi =		{10.4230/LIPIcs.STACS.2021.6},
  annote =	{Keywords: Quantum Algorithms, Quantum Walks, Graph Theory}
}
Document
Span Programs and Quantum Time Complexity

Authors: Arjan Cornelissen, Stacey Jeffery, Maris Ozols, and Alvaro Piedrafita

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Span programs are an important model of quantum computation due to their correspondence with quantum query and space complexity. While the query complexity of quantum algorithms obtained from span programs is well-understood, it is not generally clear how to implement certain query-independent operations in a time-efficient manner. In this work, we prove an analogous connection for quantum time complexity. In particular, we show how to convert a sufficiently-structured quantum algorithm for f with time complexity T into a span program for f such that it compiles back into a quantum algorithm for f with time complexity 𝒪̃(T). This shows that for span programs derived from algorithms with a time-efficient implementation, we can preserve the time efficiency when implementing the span program, which means that span programs capture time, query and space complexities and are a complete model of quantum algorithms. One practical advantage of being able to convert quantum algorithms to span programs in a way that preserves time complexity is that span programs compose very nicely. We demonstrate this by improving Ambainis’s variable-time quantum search result using our construction through a span program composition for the OR function.

Cite as

Arjan Cornelissen, Stacey Jeffery, Maris Ozols, and Alvaro Piedrafita. Span Programs and Quantum Time Complexity. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 26:1-26:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cornelissen_et_al:LIPIcs.MFCS.2020.26,
  author =	{Cornelissen, Arjan and Jeffery, Stacey and Ozols, Maris and Piedrafita, Alvaro},
  title =	{{Span Programs and Quantum Time Complexity}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{26:1--26:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.26},
  URN =		{urn:nbn:de:0030-drops-126947},
  doi =		{10.4230/LIPIcs.MFCS.2020.26},
  annote =	{Keywords: quantum query algorithms, span programs, variable-time quantum search}
}
Document
Span Programs and Quantum Space Complexity

Authors: Stacey Jeffery

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
While quantum computers hold the promise of significant computational speedups, the limited size of early quantum machines motivates the study of space-bounded quantum computation. We relate the quantum space complexity of computing a function f with one-sided error to the logarithm of its span program size, a classical quantity that is well-studied in attempts to prove formula size lower bounds. In the more natural bounded error model, we show that the amount of space needed for a unitary quantum algorithm to compute f with bounded (two-sided) error is lower bounded by the logarithm of its approximate span program size. Approximate span programs were introduced in the field of quantum algorithms but not studied classically. However, the approximate span program size of a function is a natural generalization of its span program size. While no non-trivial lower bound is known on the span program size (or approximate span program size) of any concrete function, a number of lower bounds are known on the monotone span program size. We show that the approximate monotone span program size of f is a lower bound on the space needed by quantum algorithms of a particular form, called monotone phase estimation algorithms, to compute f. We then give the first non-trivial lower bound on the approximate span program size of an explicit function.

Cite as

Stacey Jeffery. Span Programs and Quantum Space Complexity. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 4:1-4:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jeffery:LIPIcs.ITCS.2020.4,
  author =	{Jeffery, Stacey},
  title =	{{Span Programs and Quantum Space Complexity}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{4:1--4:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.4},
  URN =		{urn:nbn:de:0030-drops-116896},
  doi =		{10.4230/LIPIcs.ITCS.2020.4},
  annote =	{Keywords: Quantum space complexity, span programs}
}
Document
Quantum Walk Sampling by Growing Seed Sets

Authors: Simon Apers

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
This work describes a new algorithm for creating a superposition over the edge set of a graph, encoding a quantum sample of the random walk stationary distribution. The algorithm requires a number of quantum walk steps scaling as O~(m^(1/3) delta^(-1/3)), with m the number of edges and delta the random walk spectral gap. This improves on existing strategies by initially growing a classical seed set in the graph, from which a quantum walk is then run. The algorithm leads to a number of improvements: (i) it provides a new bound on the setup cost of quantum walk search algorithms, (ii) it yields a new algorithm for st-connectivity, and (iii) it allows to create a superposition over the isomorphisms of an n-node graph in time O~(2^(n/3)), surpassing the Omega(2^(n/2)) barrier set by index erasure.

Cite as

Simon Apers. Quantum Walk Sampling by Growing Seed Sets. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{apers:LIPIcs.ESA.2019.9,
  author =	{Apers, Simon},
  title =	{{Quantum Walk Sampling by Growing Seed Sets}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.9},
  URN =		{urn:nbn:de:0030-drops-111300},
  doi =		{10.4230/LIPIcs.ESA.2019.9},
  annote =	{Keywords: Quantum algorithms, Quantum walks, Connectivity, Graph theory}
}
Document
Track A: Algorithms, Complexity and Games
The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation

Authors: Shantanav Chakraborty, András Gilyén, and Stacey Jeffery

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We apply the framework of block-encodings, introduced by Low and Chuang (under the name standard-form), to the study of quantum machine learning algorithms and derive general results that are applicable to a variety of input models, including sparse matrix oracles and matrices stored in a data structure. We develop several tools within the block-encoding framework, such as singular value estimation of a block-encoded matrix, and quantum linear system solvers using block-encodings. The presented results give new techniques for Hamiltonian simulation of non-sparse matrices, which could be relevant for certain quantum chemistry applications, and which in turn imply an exponential improvement in the dependence on precision in quantum linear systems solvers for non-sparse matrices. In addition, we develop a technique of variable-time amplitude estimation, based on Ambainis' variable-time amplitude amplification technique, which we are also able to apply within the framework. As applications, we design the following algorithms: (1) a quantum algorithm for the quantum weighted least squares problem, exhibiting a 6-th power improvement in the dependence on the condition number and an exponential improvement in the dependence on the precision over the previous best algorithm of Kerenidis and Prakash; (2) the first quantum algorithm for the quantum generalized least squares problem; and (3) quantum algorithms for estimating electrical-network quantities, including effective resistance and dissipated power, improving upon previous work.

Cite as

Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.ICALP.2019.33,
  author =	{Chakraborty, Shantanav and Gily\'{e}n, Andr\'{a}s and Jeffery, Stacey},
  title =	{{The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33},
  URN =		{urn:nbn:de:0030-drops-106092},
  doi =		{10.4230/LIPIcs.ICALP.2019.33},
  annote =	{Keywords: Quantum algorithms, Hamiltonian simulation, Quantum machine learning}
}
Document
On Quantum Chosen-Ciphertext Attacks and Learning with Errors

Authors: Gorjan Alagic, Stacey Jeffery, Maris Ozols, and Alexander Poremba

Published in: LIPIcs, Volume 135, 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)


Abstract
Quantum computing is a significant threat to classical public-key cryptography. In strong "quantum access" security models, numerous symmetric-key cryptosystems are also vulnerable. We consider classical encryption in a model which grants the adversary quantum oracle access to encryption and decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge) queries only. We define this model formally using appropriate notions of ciphertext indistinguishability and semantic security (which are equivalent by standard arguments) and call it QCCA1 in analogy to the classical CCA1 security model. Using a bound on quantum random-access codes, we show that the standard PRF-based encryption schemes are QCCA1-secure when instantiated with quantum-secure primitives. We then revisit standard IND-CPA-secure Learning with Errors (LWE) encryption and show that leaking just one quantum decryption query (and no other queries or leakage of any kind) allows the adversary to recover the full secret key with constant success probability. In the classical setting, by contrast, recovering the key requires a linear number of decryption queries. The algorithm at the core of our attack is a (large-modulus version of) the well-known Bernstein-Vazirani algorithm. We emphasize that our results should not be interpreted as a weakness of these cryptosystems in their stated security setting (i.e., post-quantum chosen-plaintext secrecy). Rather, our results mean that, if these cryptosystems are exposed to chosen-ciphertext attacks (e.g., as a result of deployment in an inappropriate real-world setting) then quantum attacks are even more devastating than classical ones.

Cite as

Gorjan Alagic, Stacey Jeffery, Maris Ozols, and Alexander Poremba. On Quantum Chosen-Ciphertext Attacks and Learning with Errors. In 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 135, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alagic_et_al:LIPIcs.TQC.2019.1,
  author =	{Alagic, Gorjan and Jeffery, Stacey and Ozols, Maris and Poremba, Alexander},
  title =	{{On Quantum Chosen-Ciphertext Attacks and Learning with Errors}},
  booktitle =	{14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-112-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{135},
  editor =	{van Dam, Wim and Man\v{c}inska, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2019.1},
  URN =		{urn:nbn:de:0030-drops-103939},
  doi =		{10.4230/LIPIcs.TQC.2019.1},
  annote =	{Keywords: quantum chosen-ciphertext security, quantum attacks, learning with errors}
}
  • Refine by Author
  • 14 Jeffery, Stacey
  • 4 Kimmel, Shelby
  • 4 Ozols, Maris
  • 3 Apers, Simon
  • 3 Piedrafita, Alvaro
  • Show More...

  • Refine by Classification
  • 9 Theory of computation → Quantum computation theory
  • 7 Theory of computation → Quantum complexity theory
  • 6 Theory of computation → Quantum query complexity
  • 5 Theory of computation → Graph algorithms analysis
  • 2 Security and privacy → Cryptanalysis and other attacks
  • Show More...

  • Refine by Keyword
  • 6 Quantum algorithms
  • 4 span programs
  • 2 Connectivity
  • 2 Graph theory
  • 2 Query complexity
  • Show More...

  • Refine by Type
  • 31 document
  • 1 volume

  • Refine by Publication Year
  • 14 2018
  • 4 2019
  • 3 2023
  • 3 2024
  • 2 2016
  • Show More...