10 Search Results for "Jones, Lee"


Document
Constraint Modelling with LLMs Using In-Context Learning

Authors: Kostis Michailidis, Dimos Tsouros, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We present different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities.

Cite as

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-Context Learning. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 20:1-20:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{michailidis_et_al:LIPIcs.CP.2024.20,
  author =	{Michailidis, Kostis and Tsouros, Dimos and Guns, Tias},
  title =	{{Constraint Modelling with LLMs Using In-Context Learning}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{20:1--20:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20},
  URN =		{urn:nbn:de:0030-drops-207053},
  doi =		{10.4230/LIPIcs.CP.2024.20},
  annote =	{Keywords: Constraint Modelling, Constraint Acquisition, Constraint Programming, Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recognition, Retrieval-Augmented Generation, Optimisation}
}
Document
Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads

Authors: Xiaofei Carl Zang, Xiang Li, Kyle Metcalfe, Tuval Ben-Yehezkel, Ryan Kelley, and Mingfu Shao

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Modern sequencing technologies allow for the addition of short-sequence tags, known as anchors, to both ends of a captured molecule. Anchors are useful in assembling the full-length sequence of a captured molecule as they can be used to accurately determine the endpoints. One representative of such anchor-enabled technology is LoopSeq Solo, a synthetic long read (SLR) sequencing protocol. LoopSeq Solo also achieves ultra-high sequencing depth and high purity of short reads covering the entire captured molecule. Despite the availability of many assembly methods, constructing full-length sequence from these anchor-enabled, ultra-high coverage sequencing data remains challenging due to the complexity of the underlying assembly graphs and the lack of specific algorithms leveraging anchors. We present Anchorage, a novel assembler that performs anchor-guided assembly for ultra-high-depth sequencing data. Anchorage starts with a kmer-based approach for precise estimation of molecule lengths. It then formulates the assembly problem as finding an optimal path that connects the two nodes determined by anchors in the underlying compact de Bruijn graph. The optimality is defined as maximizing the weight of the smallest node while matching the estimated sequence length. Anchorage uses a modified dynamic programming algorithm to efficiently find the optimal path. Through both simulations and real data, we show that Anchorage outperforms existing assembly methods, particularly in the presence of sequencing artifacts. Anchorage fills the gap in assembling anchor-enabled data. We anticipate its broad use as anchor-enabled sequencing technologies become prevalent. Anchorage is freely available at https://github.com/Shao-Group/anchorage; the scripts and documents that can reproduce all experiments in this manuscript are available at https://github.com/Shao-Group/anchorage-test.

Cite as

Xiaofei Carl Zang, Xiang Li, Kyle Metcalfe, Tuval Ben-Yehezkel, Ryan Kelley, and Mingfu Shao. Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zang_et_al:LIPIcs.WABI.2024.22,
  author =	{Zang, Xiaofei Carl and Li, Xiang and Metcalfe, Kyle and Ben-Yehezkel, Tuval and Kelley, Ryan and Shao, Mingfu},
  title =	{{Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.22},
  URN =		{urn:nbn:de:0030-drops-206660},
  doi =		{10.4230/LIPIcs.WABI.2024.22},
  annote =	{Keywords: Genome assembly, de Bruijn graph, synthetic long reads, anchor-guided assembly, LoopSeq}
}
Document
AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction

Authors: Adam Cicherski, Anna Lisiecka, and Norbert Dojer

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free approach that allows to construct pangenome graphs using significantly less computational resources than state-of-the-art tools. The code of AlfaPang is freely available at https://github.com/AdamCicherski/AlfaPang.

Cite as

Adam Cicherski, Anna Lisiecka, and Norbert Dojer. AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cicherski_et_al:LIPIcs.WABI.2024.23,
  author =	{Cicherski, Adam and Lisiecka, Anna and Dojer, Norbert},
  title =	{{AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.23},
  URN =		{urn:nbn:de:0030-drops-206673},
  doi =		{10.4230/LIPIcs.WABI.2024.23},
  annote =	{Keywords: pangenome, variation graph, genome alignment, population genomics}
}
Document
IMELL Cut Elimination with Linear Overhead

Authors: Beniamino Accattoli and Claudio Sacerdoti Coen

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Recently, Accattoli introduced the Exponential Substitution Calculus (ESC) given by untyped proof terms for Intuitionistic Multiplicative Exponential Linear Logic (IMELL), endowed with rewriting rules at-a-distance for cut elimination. He also introduced a new cut elimination strategy, dubbed the good strategy, and showed that its number of steps is a time cost model with polynomial overhead for ESC/IMELL, and the first such one. Here, we refine Accattoli’s result by introducing an abstract machine for ESC and proving that it implements the good strategy and computes cut-free terms/proofs within a linear overhead.

Cite as

Beniamino Accattoli and Claudio Sacerdoti Coen. IMELL Cut Elimination with Linear Overhead. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.24,
  author =	{Accattoli, Beniamino and Sacerdoti Coen, Claudio},
  title =	{{IMELL Cut Elimination with Linear Overhead}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.24},
  URN =		{urn:nbn:de:0030-drops-203539},
  doi =		{10.4230/LIPIcs.FSCD.2024.24},
  annote =	{Keywords: Lambda calculus, linear logic, abstract machines}
}
Document
SlackCheck: A Linux Kernel Module to Verify Temporal Properties of a Task Schedule

Authors: Michele Castrovilli and Enrico Bini

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
The Linux Kernel offers several scheduling classes. From SCHED_DEADLINE down to SCHED_FIFO, SCHED_RR and SCHED_OTHER, the scheduling classes can provide different responsiveness to very diverse user workloads. Still, Linux does not offer any mechanism to take some action upon the violation of temporal constraints at runtime. The lack of such a feature is also due to the difficulty of extending the established notion of deadline to workloads which are not releasing periodic/sporadic jobs. Exploiting the notion of supply functions for any resource schedule, we implemented SlackCheck, a kernel module which is capable to verify at runtime if a given task is assigned a desired amount of resource or not. SlackCheck adds a constant-time check at every scheduling decision and leverages the recent availability of a Runtime Verification engine in the kernel.

Cite as

Michele Castrovilli and Enrico Bini. SlackCheck: A Linux Kernel Module to Verify Temporal Properties of a Task Schedule. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 2:1-2:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{castrovilli_et_al:LIPIcs.ECRTS.2024.2,
  author =	{Castrovilli, Michele and Bini, Enrico},
  title =	{{SlackCheck: A Linux Kernel Module to Verify Temporal Properties of a Task Schedule}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{2:1--2:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.2},
  URN =		{urn:nbn:de:0030-drops-203054},
  doi =		{10.4230/LIPIcs.ECRTS.2024.2},
  annote =	{Keywords: Linux scheduler, Runtime verification, bounded-delay resource partition, supply function, service curve, real-time calculus, network calculus}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

Authors: Raphael Douglas Giles, Vincent Jackson, and Christine Rizkallah

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We introduce a powerful termination algorithm for structurally recursive functions that improves on the core ideas behind lexicographic termination algorithms for functional programs. The algorithm generates linear-lexicographic combinations of primitive measure functions measuring the recursive structure of terms. We introduce a measure language that enables the simplification and comparison of measures and we prove meta-theoretic properties of our measure language. Moreover, we demonstrate our algorithm, on an untyped first-order functional language and prove its soundness and that it runs in polynomial time. We also provide a Haskell implementation. As part of this work, we also show how to solve the maximisation of negative vector-components as a linear program.

Cite as

Raphael Douglas Giles, Vincent Jackson, and Christine Rizkallah. T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 139:1-139:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{giles_et_al:LIPIcs.ICALP.2024.139,
  author =	{Giles, Raphael Douglas and Jackson, Vincent and Rizkallah, Christine},
  title =	{{T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{139:1--139:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.139},
  URN =		{urn:nbn:de:0030-drops-202827},
  doi =		{10.4230/LIPIcs.ICALP.2024.139},
  annote =	{Keywords: Termination, Recursive functions}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions

Authors: Wojciech Różowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Deterministic automata have been traditionally studied through the point of view of language equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-word distance quantifying the of states. Intuitively, the longer the word needed to observe a difference between two states, then the closer their behaviour is. In this paper, we give a sound and complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing to manipulate rational-indexed judgements of the form e ≡_ε f meaning term e is approximately equivalent to term f within the error margin of ε. The technical core of the paper is dedicated to the completeness argument that draws techniques from order theory and Banach spaces to simplify the calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Cite as

Wojciech Różowski. A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 149:1-149:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rozowski:LIPIcs.ICALP.2024.149,
  author =	{R\'{o}\.{z}owski, Wojciech},
  title =	{{A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{149:1--149:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.149},
  URN =		{urn:nbn:de:0030-drops-202920},
  doi =		{10.4230/LIPIcs.ICALP.2024.149},
  annote =	{Keywords: Regular Expressions, Behavioural Distances, Quantitative Equational Theories}
}
Document
Survey
Towards Representing Processes and Reasoning with Process Descriptions on the Web

Authors: Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
We work towards a vocabulary to represent processes and temporal logic specifications as graph-structured data. Different fields use incompatible terminologies for describing essentially the same process-related concepts. In addition, processes can be represented from different perspectives and levels of abstraction: both state-centric and event-centric perspectives offer distinct insights into the underlying processes. In this work, we strive to unify the representation of processes and related concepts by leveraging the power of knowledge graphs. We survey approaches to representing processes and reasoning with process descriptions from different fields and provide a selection of scenarios to help inform the scope of a unified representation of processes. We focus on processes that can be executed and observed via web interfaces. We propose to provide a representation designed to combine state-centric and event-centric perspectives while incorporating temporal querying and reasoning capabilities on temporal logic specifications. A standardised vocabulary and representation for processes and temporal specifications would contribute towards bridging the gap between the terminologies from different fields and fostering the broader application of methods involving temporal logics, such as formal verification and program synthesis.

Cite as

Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese. Towards Representing Processes and Reasoning with Process Descriptions on the Web. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 1:1-1:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{harth_et_al:TGDK.2.1.1,
  author =	{Harth, Andreas and K\"{a}fer, Tobias and Rula, Anisa and Calbimonte, Jean-Paul and Kamburjan, Eduard and Giese, Martin},
  title =	{{Towards Representing Processes and Reasoning with Process Descriptions on the Web}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:32},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.1},
  URN =		{urn:nbn:de:0030-drops-198583},
  doi =		{10.4230/TGDK.2.1.1},
  annote =	{Keywords: Process modelling, Process ontology, Temporal logic, Web services}
}
Document
An Intuitionistic Analysis of Size-change Termination

Authors: Silvia Steila

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
In 2001 Lee, Jones and Ben-Amram introduced the notion of size-change termination (SCT) for first order functional programs, a sufficient condition for termination. They proved that a program is size-change terminating if and only if it has a certain property which can be statically verified from the recursive definition of the program. Their proof of the size-change termination theorem used Ramsey's Theorem for pairs, which is a purely classical result. In 2012 Vytiniotis, Coquand and Wahlsteldt intuitionistically proved a classical variant of the size-change termination theorem by using the Almost-Full Theorem instead of Ramsey's Theorem for pairs. In this paper we provide an intuitionistic proof of another classical variant of the SCT theorem: our goal is to provide a statement and a proof very similar to the original ones. This can be done by using the H-closure Theorem, which differs from Ramsey's Theorem for pairs only by a contrapositive step. As a side result we obtain another proof of the characterization of the functions computed by a tail-recursive SCT program, by relating the SCT Theorem with the Termination Theorem by Podelski and Rybalchenko. Finally, by investigating the relationship between them, we provide a property in the "language" of size-change termination which is equivalent to Podelski and Rybalchenko's termination.

Cite as

Silvia Steila. An Intuitionistic Analysis of Size-change Termination. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 288-307, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{steila:LIPIcs.TYPES.2014.288,
  author =	{Steila, Silvia},
  title =	{{An Intuitionistic Analysis of Size-change Termination}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{288--307},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.288},
  URN =		{urn:nbn:de:0030-drops-55026},
  doi =		{10.4230/LIPIcs.TYPES.2014.288},
  annote =	{Keywords: Intuitionism, Ramsey's Theorem, Termination}
}
Document
Local Minimax Learning of Approximately Polynomial Functions

Authors: Lee Jones and Konstantin Rybnikov

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
Suppose we have a number of noisy measurements of an unknown real-valued function $f$ near point of interest $mathbf{x}_0 in mathbb{R}^d$. Suppose also that nothing can be assumed about the noise distribution, except for zero mean and bounded covariance matrix. We want to estimate $f$ at $mathbf{x=x}_0$ using a general linear parametric family $f(mathbf{x};mathbf{a}) = a_0 h_0 (mathbf{x}) ++ a_q h_q (mathbf{x})$, where $mathbf{a} in mathbb{R}^q$ and $h_i$'s are bounded functions on a neighborhood $B$ of $mathbf{x}_0$ which contains all points of measurement. Typically, $B$ is a Euclidean ball or cube in $mathbb{R}^d$ (more generally, a ball in an $l_p$-norm). In the case when the $h_i$'s are polynomial functions in $x_1,ldots,x_d$ the model is called locally-polynomial. In particular, if the $h_i$'s form a basis of the linear space of polynomials of degree at most two, the model is called locally-quadratic (if the degree is at most three, the model is locally-cubic, etc.). Often, there is information, which is called context, about the function $f$ (restricted to $B$ ) available, such as that it takes values in a known interval, or that it satisfies a Lipschitz condition. The theory of local minimax estimation with context for locally-polynomial models and approximately locally polynomial models has been recently initiated by Jones. In the case of local linearity and a bound on the change of $f$ on $B$, where $B$ is a ball, the solution for squared error loss is in the form of ridge regression, where the ridge parameter is identified; hence, minimax justification for ridge regression is given together with explicit best error bounds. The analysis of polynomial models of degree above 1 leads to interesting and difficult questions in real algebraic geometry and non-linear optimization. We show that in the case when $f$ is a probability function, the optimal (in the minimax sense) estimator is effectively computable (with any given precision), thanks to Tarski's elimination principle.

Cite as

Lee Jones and Konstantin Rybnikov. Local Minimax Learning of Approximately Polynomial Functions. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{jones_et_al:DagSemProc.06201.3,
  author =	{Jones, Lee and Rybnikov, Konstantin},
  title =	{{Local Minimax Learning of Approximately Polynomial Functions}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--12},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.3},
  URN =		{urn:nbn:de:0030-drops-8912},
  doi =		{10.4230/DagSemProc.06201.3},
  annote =	{Keywords: Local learning, statistical learning, estimator, minimax, convex optimization, quantifier elimination, semialgebraic, ridge regression, polynomial}
}
  • Refine by Author
  • 1 Accattoli, Beniamino
  • 1 Ben-Yehezkel, Tuval
  • 1 Bini, Enrico
  • 1 Calbimonte, Jean-Paul
  • 1 Castrovilli, Michele
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Business process modeling
  • 1 Applied computing → Computational genomics
  • 1 Applied computing → Event-driven architectures
  • 1 Applied computing → Molecular sequence analysis
  • 1 Computer systems organization → Real-time operating systems
  • Show More...

  • Refine by Keyword
  • 2 Termination
  • 1 Behavioural Distances
  • 1 Constraint Acquisition
  • 1 Constraint Modelling
  • 1 Constraint Programming
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 8 2024
  • 1 2007
  • 1 2015