3 Search Results for "Jungers, Raphaël M."


Document
Monoids of Upper Triangular Matrices over the Boolean Semiring

Authors: Andrew Ryzhikov and Petra Wolf

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a finite set 𝒜 of square matrices and a square matrix B, all of the same dimension, the membership problem asks if B belongs to the monoid ℳ(𝒜) generated by 𝒜. The rank one problem asks if there is a matrix of rank one in ℳ(𝒜). We study the membership and the rank one problems in the case where all matrices are upper triangular matrices over the Boolean semiring. We characterize the computational complexity of these problems, and identify their PSPACE-complete and NP-complete special cases. We then consider, for a set 𝒜 of matrices from the same class, the problem of finding in ℳ(𝒜) a matrix of minimum rank with no zero rows. We show that the minimum rank of such matrix can be computed in linear time.We also characterize the space complexity of this problem depending on the size of 𝒜, and apply all these results to the ergodicity problem asking if ℳ(𝒜) contains a matrix with a column consisting of all ones. Finally, we show that our results give better upper bounds for the case where each row of every matrix in 𝒜 contains at most one non-zero entry than for the general case.

Cite as

Andrew Ryzhikov and Petra Wolf. Monoids of Upper Triangular Matrices over the Boolean Semiring. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 81:1-81:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ryzhikov_et_al:LIPIcs.MFCS.2024.81,
  author =	{Ryzhikov, Andrew and Wolf, Petra},
  title =	{{Monoids of Upper Triangular Matrices over the Boolean Semiring}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{81:1--81:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.81},
  URN =		{urn:nbn:de:0030-drops-206377},
  doi =		{10.4230/LIPIcs.MFCS.2024.81},
  annote =	{Keywords: matrix monoids, membership, rank, ergodicity, partially ordered automata}
}
Document
Cooking String-Integer Conversions with Noodles

Authors: Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
We propose a method for efficient handling string constraints with string-integer conversions. It extends the recently introduced stabilization-based procedure for solving string (dis)equations with regular and length constraints. Our approach is to translate the conversions into a linear integer arithmetic formula, together with regular constraints and word equations. We have integrated it into the string solver Z3-Noodler, and our experiments show that it is competitive and on some established benchmarks even several orders of magnitude faster than the state of the art.

Cite as

Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč. Cooking String-Integer Conversions with Noodles. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{havlena_et_al:LIPIcs.SAT.2024.14,
  author =	{Havlena, Vojt\v{e}ch and Hol{\'\i}k, Luk\'{a}\v{s} and Leng\'{a}l, Ond\v{r}ej and S{\'\i}\v{c}, Juraj},
  title =	{{Cooking String-Integer Conversions with Noodles}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14},
  URN =		{urn:nbn:de:0030-drops-205365},
  doi =		{10.4230/LIPIcs.SAT.2024.14},
  annote =	{Keywords: string solving, string conversions, SMT solving}
}
Document
On Randomized Generation of Slowly Synchronizing Automata

Authors: Costanza Catalano and Raphaël M. Jungers

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Motivated by the randomized generation of slowly synchronizing automata, we study automata made of permutation letters and a merging letter of rank n-1 . We present a constructive randomized procedure to generate synchronizing automata of that kind with (potentially) large alphabet size based on recent results on primitive sets of matrices. We report numerical results showing that our algorithm finds automata with much larger reset threshold than a mere uniform random generation and we present new families of automata with reset threshold of Omega(n^2/4) . We finally report theoretical results on randomized generation of primitive sets of matrices: a set of permutation matrices with a 0 entry changed into a 1 is primitive and has exponent of O(n log n) with high probability in case of uniform random distribution and the same holds for a random set of binary matrices where each entry is set, independently, equal to 1 with probability p and equal to 0 with probability 1-p , when np-log n - > infty as n - > infty .

Cite as

Costanza Catalano and Raphaël M. Jungers. On Randomized Generation of Slowly Synchronizing Automata. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 48:1-48:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{catalano_et_al:LIPIcs.MFCS.2018.48,
  author =	{Catalano, Costanza and Jungers, Rapha\"{e}l M.},
  title =	{{On Randomized Generation of Slowly Synchronizing Automata}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{48:1--48:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.48},
  URN =		{urn:nbn:de:0030-drops-96305},
  doi =		{10.4230/LIPIcs.MFCS.2018.48},
  annote =	{Keywords: Synchronizing automata, random automata, Cern\'{y} conjecture, automata with simple idempotents, primitive sets of matrices}
}
  • Refine by Author
  • 1 Catalano, Costanza
  • 1 Havlena, Vojtěch
  • 1 Holík, Lukáš
  • 1 Jungers, Raphaël M.
  • 1 Lengál, Ondřej
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Random graphs
  • 1 Theory of computation → Formal languages and automata theory
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Randomness, geometry and discrete structures

  • Refine by Keyword
  • 1 Cerný conjecture
  • 1 SMT solving
  • 1 Synchronizing automata
  • 1 automata with simple idempotents
  • 1 ergodicity
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail