79 Search Results for "Kakimura, Naonori"


Volume

LIPIcs, Volume 283

34th International Symposium on Algorithms and Computation (ISAAC 2023)

ISAAC 2023, December 3-6, 2023, Kyoto, Japan

Editors: Satoru Iwata and Naonori Kakimura

Document
McDag: Indexing Maximal Common Subsequences in Practice

Authors: Giovanni Buzzega, Alessio Conte, Roberto Grossi, and Giulia Punzi

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Analyzing and comparing sequences of symbols is among the most fundamental problems in computer science, possibly even more so in bioinformatics. Maximal Common Subsequences (MCSs), i.e., inclusion-maximal sequences of non-contiguous symbols common to two or more strings, have only recently received attention in this area, despite being a basic notion and a natural generalization of more common tools like Longest Common Substrings/Subsequences. In this paper we simplify and engineer recent advancements on MCSs into a practical tool called McDag, the first publicly available tool that can index MCSs of real genomic data. We demonstrate that our tool can index sequences exceeding 10,000 base pairs within minutes, utilizing only 4-7% more than the minimum required nodes, while also extracting relevant insights.

Cite as

Giovanni Buzzega, Alessio Conte, Roberto Grossi, and Giulia Punzi. McDag: Indexing Maximal Common Subsequences in Practice. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{buzzega_et_al:LIPIcs.WABI.2024.21,
  author =	{Buzzega, Giovanni and Conte, Alessio and Grossi, Roberto and Punzi, Giulia},
  title =	{{McDag: Indexing Maximal Common Subsequences in Practice}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.21},
  URN =		{urn:nbn:de:0030-drops-206650},
  doi =		{10.4230/LIPIcs.WABI.2024.21},
  annote =	{Keywords: Index data structure, DAG, Common subsequence, Inclusion-wise maximality, LCS}
}
Document
Generalizing Roberts' Characterization of Unit Interval Graphs

Authors: Virginia Ardévol Martínez, Romeo Rizzi, Abdallah Saffidine, Florian Sikora, and Stéphane Vialette

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For any natural number d, a graph G is a (disjoint) d-interval graph if it is the intersection graph of (disjoint) d-intervals, the union of d (disjoint) intervals on the real line. Two important subclasses of d-interval graphs are unit and balanced d-interval graphs (where every interval has unit length or all the intervals associated to a same vertex have the same length, respectively). A celebrated result by Roberts gives a simple characterization of unit interval graphs being exactly claw-free interval graphs. Here, we study the generalization of this characterization for d-interval graphs. In particular, we prove that for any d ⩾ 2, if G is a K_{1,2d+1}-free interval graph, then G is a unit d-interval graph. However, somehow surprisingly, under the same assumptions, G is not always a disjoint unit d-interval graph. This implies that the class of disjoint unit d-interval graphs is strictly included in the class of unit d-interval graphs. Finally, we study the relationships between the classes obtained under disjoint and non-disjoint d-intervals in the balanced case and show that the classes of disjoint balanced 2-intervals and balanced 2-intervals coincide, but this is no longer true for d > 2.

Cite as

Virginia Ardévol Martínez, Romeo Rizzi, Abdallah Saffidine, Florian Sikora, and Stéphane Vialette. Generalizing Roberts' Characterization of Unit Interval Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 12:1-12:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ardevolmartinez_et_al:LIPIcs.MFCS.2024.12,
  author =	{Ard\'{e}vol Mart{\'\i}nez, Virginia and Rizzi, Romeo and Saffidine, Abdallah and Sikora, Florian and Vialette, St\'{e}phane},
  title =	{{Generalizing Roberts' Characterization of Unit Interval Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.12},
  URN =		{urn:nbn:de:0030-drops-205687},
  doi =		{10.4230/LIPIcs.MFCS.2024.12},
  annote =	{Keywords: Interval graphs, Multiple Interval Graphs, Unit Interval Graphs, Characterization}
}
Document
Local Enumeration and Majority Lower Bounds

Authors: Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard. Local Enumeration and Majority Lower Bounds. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.CCC.2024.17,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Pudl\'{a}k, Pavel and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration and Majority Lower Bounds}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.17},
  URN =		{urn:nbn:de:0030-drops-204136},
  doi =		{10.4230/LIPIcs.CCC.2024.17},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
Track A: Algorithms, Complexity and Games
Solution Discovery via Reconfiguration for Problems in P

Authors: Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Daniel Schmand, and Sebastian Siebertz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the recently introduced framework of solution discovery via reconfiguration [Fellows et al., ECAI 2023], we are given an initial configuration of k tokens on a graph and the question is whether we can transform this configuration into a feasible solution (for some problem) via a bounded number b of small modification steps. In this work, we study solution discovery variants of polynomial-time solvable problems, namely Spanning Tree Discovery, Shortest Path Discovery, Matching Discovery, and Vertex/Edge Cut Discovery in the unrestricted token addition/removal model, the token jumping model, and the token sliding model. In the unrestricted token addition/removal model, we show that all four discovery variants remain in P. For the token jumping model we also prove containment in P, except for Vertex/Edge Cut Discovery, for which we prove NP-completeness. Finally, in the token sliding model, almost all considered problems become NP-complete, the exception being Spanning Tree Discovery, which remains polynomial-time solvable. We then study the parameterized complexity of the NP-complete problems and provide a full classification of tractability with respect to the parameters solution size (number of tokens) k and transformation budget (number of steps) b. Along the way, we observe strong connections between the solution discovery variants of our base problems and their (weighted) rainbow variants as well as their red-blue variants with cardinality constraints.

Cite as

Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Daniel Schmand, and Sebastian Siebertz. Solution Discovery via Reconfiguration for Problems in P. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grobler_et_al:LIPIcs.ICALP.2024.76,
  author =	{Grobler, Mario and Maaz, Stephanie and Megow, Nicole and Mouawad, Amer E. and Ramamoorthi, Vijayaragunathan and Schmand, Daniel and Siebertz, Sebastian},
  title =	{{Solution Discovery via Reconfiguration for Problems in P}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.76},
  URN =		{urn:nbn:de:0030-drops-202195},
  doi =		{10.4230/LIPIcs.ICALP.2024.76},
  annote =	{Keywords: solution discovery, reconfiguration, spanning tree, shortest path, matching, cut}
}
Document
Track A: Algorithms, Complexity and Games
Optimal PSPACE-Hardness of Approximating Set Cover Reconfiguration

Authors: Shuichi Hirahara and Naoto Ohsaka

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Minmax Set Cover Reconfiguration problem, given a set system ℱ over a universe 𝒰 and its two covers 𝒞^start and 𝒞^goal of size k, we wish to transform 𝒞^start into 𝒞^goal by repeatedly adding or removing a single set of ℱ while covering the universe 𝒰 in any intermediate state. Then, the objective is to minimize the maximum size of any intermediate cover during transformation. We prove that Minmax Set Cover Reconfiguration and Minmax Dominating Set Reconfiguration are PSPACE-hard to approximate within a factor of 2-(1/polyloglog N), where N is the size of the universe and the number of vertices in a graph, respectively, improving upon Ohsaka (SODA 2024) [Ohsaka, 2024] and Karthik C. S. and Manurangsi (2023) [Karthik C. S. and Manurangsi, 2023]. This is the first result that exhibits a sharp threshold for the approximation factor of any reconfiguration problem because both problems admit a 2-factor approximation algorithm as per Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno (Theor. Comput. Sci., 2011) [Takehiro Ito et al., 2011]. Our proof is based on a reconfiguration analogue of the FGLSS reduction [Feige et al., 1996] from Probabilistically Checkable Reconfiguration Proofs of Hirahara and Ohsaka (STOC 2024) [Hirahara and Ohsaka, 2024]. We also prove that for any constant ε ∈ (0,1), Minmax Hypergraph Vertex Cover Reconfiguration on poly(ε^-1)-uniform hypergraphs is PSPACE-hard to approximate within a factor of 2-ε.

Cite as

Shuichi Hirahara and Naoto Ohsaka. Optimal PSPACE-Hardness of Approximating Set Cover Reconfiguration. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 85:1-85:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hirahara_et_al:LIPIcs.ICALP.2024.85,
  author =	{Hirahara, Shuichi and Ohsaka, Naoto},
  title =	{{Optimal PSPACE-Hardness of Approximating Set Cover Reconfiguration}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{85:1--85:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.85},
  URN =		{urn:nbn:de:0030-drops-202283},
  doi =		{10.4230/LIPIcs.ICALP.2024.85},
  annote =	{Keywords: reconfiguration problems, hardness of approximation, probabilistic proof systems, FGLSS reduction}
}
Document
Track A: Algorithms, Complexity and Games
Problems on Group-Labeled Matroid Bases

Authors: Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Consider a matroid equipped with a labeling of its ground set to an abelian group. We define the label of a subset of the ground set as the sum of the labels of its elements. We study a collection of problems on finding bases and common bases of matroids with restrictions on their labels. For zero bases and zero common bases, the results are mostly negative. While finding a non-zero basis of a matroid is not difficult, it turns out that the complexity of finding a non-zero common basis depends on the group. Namely, we show that the problem is hard for a fixed group if it contains an element of order two, otherwise it is polynomially solvable. As a generalization of both zero and non-zero constraints, we further study F-avoiding constraints where we seek a basis or common basis whose label is not in a given set F of forbidden labels. Using algebraic techniques, we give a randomized algorithm for finding an F-avoiding common basis of two matroids represented over the same field for finite groups given as operation tables. The study of F-avoiding bases with groups given as oracles leads to a conjecture stating that whenever an F-avoiding basis exists, an F-avoiding basis can be obtained from an arbitrary basis by exchanging at most |F| elements. We prove the conjecture for the special cases when |F| ≤ 2 or the group is ordered. By relying on structural observations on matroids representable over fixed, finite fields, we verify a relaxed version of the conjecture for these matroids. As a consequence, we obtain a polynomial-time algorithm in these special cases for finding an F-avoiding basis when |F| is fixed.

Cite as

Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz. Problems on Group-Labeled Matroid Bases. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 86:1-86:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{horsch_et_al:LIPIcs.ICALP.2024.86,
  author =	{H\"{o}rsch, Florian and Imolay, Andr\'{a}s and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s},
  title =	{{Problems on Group-Labeled Matroid Bases}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{86:1--86:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.86},
  URN =		{urn:nbn:de:0030-drops-202299},
  doi =		{10.4230/LIPIcs.ICALP.2024.86},
  annote =	{Keywords: matroids, matroid intersection, congruency constraint, exact-weight constraint, additive combinatorics, algebraic algorithm, strongly base orderability}
}
Document
Track A: Algorithms, Complexity and Games
Delineating Half-Integrality of the Erdős-Pósa Property for Minors: The Case of Surfaces

Authors: Christophe Paul, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In 1986 Robertson and Seymour proved a generalization of the seminal result of Erdős and Pósa on the duality of packing and covering cycles: A graph has the Erdős-Pósa property for minors if and only if it is planar. In particular, for every non-planar graph H they gave examples showing that the Erdős-Pósa property does not hold for H. Recently, Liu confirmed a conjecture of Thomas and showed that every graph has the half-integral Erdős-Pósa property for minors. Liu’s proof is non-constructive and to this date, with the exception of a small number of examples, no constructive proof is known. In this paper, we initiate the delineation of the half-integrality of the Erdős-Pósa property for minors. We conjecture that for every graph H, there exists a unique (up to a suitable equivalence relation on graph parameters) graph parameter EP_H such that H has the Erdős-Pósa property in a minor-closed graph class 𝒢 if and only if sup{EP_H(G) ∣ G ∈ 𝒢} is finite. We prove this conjecture for the class ℋ of Kuratowski-connected shallow-vortex minors by showing that, for every non-planar H ∈ ℋ, the parameter EP_H(G) is precisely the maximum order of a Robertson-Seymour counterexample to the Erdős-Pósa property of H which can be found as a minor in G. Our results are constructive and imply, for the first time, parameterized algorithms that find either a packing, or a cover, or one of the Robertson-Seymour counterexamples, certifying the existence of a half-integral packing for the graphs in ℋ.

Cite as

Christophe Paul, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Delineating Half-Integrality of the Erdős-Pósa Property for Minors: The Case of Surfaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 114:1-114:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.ICALP.2024.114,
  author =	{Paul, Christophe and Protopapas, Evangelos and Thilikos, Dimitrios M. and Wiederrecht, Sebastian},
  title =	{{Delineating Half-Integrality of the Erd\H{o}s-P\'{o}sa Property for Minors: The Case of Surfaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{114:1--114:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.114},
  URN =		{urn:nbn:de:0030-drops-202576},
  doi =		{10.4230/LIPIcs.ICALP.2024.114},
  annote =	{Keywords: Erd\H{o}s-P\'{o}sa property, Erd\H{o}s-P\'{o}sa pair, Graph parameters, Graph minors, Universal obstruction, Surface containment}
}
Document
Track A: Algorithms, Complexity and Games
Adaptive Sparsification for Matroid Intersection

Authors: Kent Quanrud

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the matroid intersection problem in the independence oracle model. Given two matroids over n common elements such that the intersection has rank k, our main technique reduces approximate matroid intersection to logarithmically many primal-dual instances over subsets of size Õ(k). This technique is inspired by recent work by [Assadi, 2024] and requires additional insight into structuring and efficiently approximating the dual LP. This combination of ideas leads to faster approximate maximum cardinality and maximum weight matroid intersection algorithms in the independence oracle model. We obtain the first nearly linear time/query approximation schemes for the regime where k ≤ n^{2/3}.

Cite as

Kent Quanrud. Adaptive Sparsification for Matroid Intersection. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 118:1-118:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{quanrud:LIPIcs.ICALP.2024.118,
  author =	{Quanrud, Kent},
  title =	{{Adaptive Sparsification for Matroid Intersection}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{118:1--118:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.118},
  URN =		{urn:nbn:de:0030-drops-202614},
  doi =		{10.4230/LIPIcs.ICALP.2024.118},
  annote =	{Keywords: Matroid intersection, adaptive sparsification, multiplicative-weight udpates, primal-dual}
}
Document
Parameterized Complexity of Submodular Minimization Under Uncertainty

Authors: Naonori Kakimura and Ildikó Schlotter

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
This paper studies the computational complexity of a robust variant of a two-stage submodular minimization problem that we call Robust Submodular Minimizer. In this problem, we are given k submodular functions f_1,… ,f_k over a set family 2^V, which represent k possible scenarios in the future when we will need to find an optimal solution for one of these scenarios, i.e., a minimizer for one of the functions. The present task is to find a set X ⊆ V that is close to some optimal solution for each f_i in the sense that some minimizer of f_i can be obtained from X by adding/removing at most d elements for a given integer d ∈ ℕ. The main contribution of this paper is to provide a complete computational map of this problem with respect to parameters k and d, which reveals a tight complexity threshold for both parameters: - Robust Submodular Minimizer can be solved in polynomial time when k ≤ 2, but is NP-hard if k is a constant with k ≥ 3. - Robust Submodular Minimizer can be solved in polynomial time when d = 0, but is NP-hard if d is a constant with d ≥ 1. - Robust Submodular Minimizer is fixed-parameter tractable when parameterized by (k,d). We also show that if some submodular function f_i has a polynomial number of minimizers, then the problem becomes fixed-parameter tractable when parameterized by d. We remark that all our hardness results hold even if each submodular function is given by a cut function of a directed graph.

Cite as

Naonori Kakimura and Ildikó Schlotter. Parameterized Complexity of Submodular Minimization Under Uncertainty. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kakimura_et_al:LIPIcs.SWAT.2024.30,
  author =	{Kakimura, Naonori and Schlotter, Ildik\'{o}},
  title =	{{Parameterized Complexity of Submodular Minimization Under Uncertainty}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.30},
  URN =		{urn:nbn:de:0030-drops-200702},
  doi =		{10.4230/LIPIcs.SWAT.2024.30},
  annote =	{Keywords: Submodular minimization, optimization under uncertainty, parameterized complexity, cut function}
}
Document
Complete Volume
LIPIcs, Volume 283, ISAAC 2023, Complete Volume

Authors: Satoru Iwata and Naonori Kakimura

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
LIPIcs, Volume 283, ISAAC 2023, Complete Volume

Cite as

34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 1-960, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{iwata_et_al:LIPIcs.ISAAC.2023,
  title =	{{LIPIcs, Volume 283, ISAAC 2023, Complete Volume}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{1--960},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023},
  URN =		{urn:nbn:de:0030-drops-193011},
  doi =		{10.4230/LIPIcs.ISAAC.2023},
  annote =	{Keywords: LIPIcs, Volume 283, ISAAC 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Satoru Iwata and Naonori Kakimura

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{iwata_et_al:LIPIcs.ISAAC.2023.0,
  author =	{Iwata, Satoru and Kakimura, Naonori},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.0},
  URN =		{urn:nbn:de:0030-drops-193029},
  doi =		{10.4230/LIPIcs.ISAAC.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Group Fairness: From Multiwinner Voting to Participatory Budgeting (Invited Talk)

Authors: Edith Elkind

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Many cities around the world allocate a part of their budget based on residents' votes, following a process known as participatory budgeting. It is important to understand which outcomes of this process should be viewed as fair, and whether fair outcomes could be computed efficiently. We summarise recent progress on this topic. We first focus on a special case of participatory budgeting where all candidate projects have the same cost (known as multiwinner voting), formulate progressively more demanding notions of fairness for this setting, and identify efficiently computable voting rules that satisfy them. We then discuss the challenges of extending these ideas to the general model.

Cite as

Edith Elkind. Group Fairness: From Multiwinner Voting to Participatory Budgeting (Invited Talk). In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 1:1-1:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{elkind:LIPIcs.ISAAC.2023.1,
  author =	{Elkind, Edith},
  title =	{{Group Fairness: From Multiwinner Voting to Participatory Budgeting}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{1:1--1:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.1},
  URN =		{urn:nbn:de:0030-drops-193038},
  doi =		{10.4230/LIPIcs.ISAAC.2023.1},
  annote =	{Keywords: multiwinner voting, participatory budgeting, justified representation}
}
Document
Invited Talk
Faithful Graph Drawing (Invited Talk)

Authors: Seok-Hee Hong

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Graph drawing aims to compute good geometric representations of graphs in two or three dimensions. It has wide applications in network visualisation, such as social networks and biological networks, arising from many other disciplines. This talk will review fundamental theoretical results as well as recent advances in graph drawing, including symmetric graph drawing, generalisation of the Tutte’s barycenter theorem, Steinitz’s theorem, and Fáry’s theorem, and the so-called beyond planar graphs such as k-planar graphs. I will conclude my talk with recent progress in visualization of big complex graphs, including sublinear-time graph drawing algorithms and faithful graph drawing.

Cite as

Seok-Hee Hong. Faithful Graph Drawing (Invited Talk). In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hong:LIPIcs.ISAAC.2023.2,
  author =	{Hong, Seok-Hee},
  title =	{{Faithful Graph Drawing}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.2},
  URN =		{urn:nbn:de:0030-drops-193044},
  doi =		{10.4230/LIPIcs.ISAAC.2023.2},
  annote =	{Keywords: Graph drawing, Planar graphs, Beyond planar graphs, Tutte’s barycenter theorem, Steinitz’s theorem, F\'{a}ry’s theorem, Sublinear-time graph drawing algorithm, Faithful graph drawing, Symmetric graph drawing}
}
Document
Realizability of Free Spaces of Curves

Authors: Hugo A. Akitaya, Maike Buchin, Majid Mirzanezhad, Leonie Ryvkin, and Carola Wenk

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
The free space diagram is a popular tool to compute the well-known Fréchet distance. As the Fréchet distance is used in many different fields, many variants have been established to cover the specific needs of these applications. Often the question arises whether a certain pattern in the free space diagram is realizable, i.e., whether there exists a pair of polygonal chains whose free space diagram corresponds to it. The answer to this question may help in deciding the computational complexity of these distance measures, as well as allowing to design more efficient algorithms for restricted input classes that avoid certain free space patterns. Therefore we study the inverse problem: Given a potential free space diagram, do there exist curves that generate this diagram? Our problem of interest is closely tied to the classic Distance Geometry problem. We settle the complexity of Distance Geometry in ℝ^{>2}, showing ∃ℝ-hardness. We use this to show that for curves in ℝ^{≥2} the realizability problem is ∃ℝ-complete, both for continuous and for discrete Fréchet distance. We prove that the continuous case in ℝ¹ is only weakly NP-hard, and we provide a pseudo-polynomial time algorithm and show that it is fixed-parameter tractable. Interestingly, for the discrete case in ℝ¹ we show that the problem becomes solvable in polynomial time.

Cite as

Hugo A. Akitaya, Maike Buchin, Majid Mirzanezhad, Leonie Ryvkin, and Carola Wenk. Realizability of Free Spaces of Curves. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ISAAC.2023.3,
  author =	{A. Akitaya, Hugo and Buchin, Maike and Mirzanezhad, Majid and Ryvkin, Leonie and Wenk, Carola},
  title =	{{Realizability of Free Spaces of Curves}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.3},
  URN =		{urn:nbn:de:0030-drops-193057},
  doi =		{10.4230/LIPIcs.ISAAC.2023.3},
  annote =	{Keywords: Fr\'{e}chet distance, Distance Geometry, free space diagram, inverse problem}
}
  • Refine by Author
  • 12 Kakimura, Naonori
  • 8 Kobayashi, Yusuke
  • 5 Ito, Takehiro
  • 4 Okamoto, Yoshio
  • 3 Kamiyama, Naoyuki
  • Show More...

  • Refine by Classification
  • 15 Theory of computation → Design and analysis of algorithms
  • 8 Theory of computation → Graph algorithms analysis
  • 6 Mathematics of computing → Graph algorithms
  • 6 Mathematics of computing → Graph theory
  • 6 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 3 parameterized complexity
  • 2 Approximation Algorithms
  • 2 Combinatorial reconfiguration
  • 2 DAG
  • 2 Graph drawing
  • Show More...

  • Refine by Type
  • 78 document
  • 1 volume

  • Refine by Publication Year
  • 63 2023
  • 9 2024
  • 2 2017
  • 2 2019
  • 1 2015
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail