LIPIcs, Volume 104
TYPES 2017, May 29 to June 1, 2017, Budapest, Hungary
Editors: Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi
Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)
Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. A Sound and Complete Substitution Algorithm for Multimode Type Theory. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{ceulemans_et_al:LIPIcs.TYPES.2023.4, author = {Ceulemans, Joris and Nuyts, Andreas and Devriese, Dominique}, title = {{A Sound and Complete Substitution Algorithm for Multimode Type Theory}}, booktitle = {29th International Conference on Types for Proofs and Programs (TYPES 2023)}, pages = {4:1--4:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-332-4}, ISSN = {1868-8969}, year = {2024}, volume = {303}, editor = {Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.4}, URN = {urn:nbn:de:0030-drops-204826}, doi = {10.4230/LIPIcs.TYPES.2023.4}, annote = {Keywords: dependent type theory, modalities, multimode type theory, explicit substitutions, substitution algorithm} }
Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)
Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10, author = {Kaposi, Ambrus and Xie, Szumi}, title = {{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}}, booktitle = {9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)}, pages = {10:1--10:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-323-2}, ISSN = {1868-8969}, year = {2024}, volume = {299}, editor = {Rehof, Jakob}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10}, URN = {urn:nbn:de:0030-drops-203396}, doi = {10.4230/LIPIcs.FSCD.2024.10}, annote = {Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework} }
Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)
Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh. The Münchhausen Method in Type Theory. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{altenkirch_et_al:LIPIcs.TYPES.2022.10, author = {Altenkirch, Thorsten and Kaposi, Ambrus and \v{S}inkarovs, Artjoms and V\'{e}gh, Tam\'{a}s}, title = {{The M\"{u}nchhausen Method in Type Theory}}, booktitle = {28th International Conference on Types for Proofs and Programs (TYPES 2022)}, pages = {10:1--10:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-285-3}, ISSN = {1868-8969}, year = {2023}, volume = {269}, editor = {Kesner, Delia and P\'{e}drot, Pierre-Marie}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.10}, URN = {urn:nbn:de:0030-drops-184534}, doi = {10.4230/LIPIcs.TYPES.2022.10}, annote = {Keywords: type theory, proof assistants, very dependent types} }
Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)
Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the Metatheory of Type Theory, Internal Sconing Is Enough. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{bocquet_et_al:LIPIcs.FSCD.2023.18, author = {Bocquet, Rafa\"{e}l and Kaposi, Ambrus and Sattler, Christian}, title = {{For the Metatheory of Type Theory, Internal Sconing Is Enough}}, booktitle = {8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)}, pages = {18:1--18:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-277-8}, ISSN = {1868-8969}, year = {2023}, volume = {260}, editor = {Gaboardi, Marco and van Raamsdonk, Femke}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.18}, URN = {urn:nbn:de:0030-drops-180029}, doi = {10.4230/LIPIcs.FSCD.2023.18}, annote = {Keywords: type theory, presheaves, canonicity, normalization, sconing, gluing} }
Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)
Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh. Combinatory Logic and Lambda Calculus Are Equal, Algebraically. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{altenkirch_et_al:LIPIcs.FSCD.2023.24, author = {Altenkirch, Thorsten and Kaposi, Ambrus and \v{S}inkarovs, Artjoms and V\'{e}gh, Tam\'{a}s}, title = {{Combinatory Logic and Lambda Calculus Are Equal, Algebraically}}, booktitle = {8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)}, pages = {24:1--24:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-277-8}, ISSN = {1868-8969}, year = {2023}, volume = {260}, editor = {Gaboardi, Marco and van Raamsdonk, Femke}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.24}, URN = {urn:nbn:de:0030-drops-180086}, doi = {10.4230/LIPIcs.FSCD.2023.24}, annote = {Keywords: Combinatory logic, lambda calculus, quotient inductive types, Cubical Agda} }
Published in: LIPIcs, Volume 239, 27th International Conference on Types for Proofs and Programs (TYPES 2021)
István Donkó and Ambrus Kaposi. Internal Strict Propositions Using Point-Free Equations. In 27th International Conference on Types for Proofs and Programs (TYPES 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 239, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{donko_et_al:LIPIcs.TYPES.2021.6, author = {Donk\'{o}, Istv\'{a}n and Kaposi, Ambrus}, title = {{Internal Strict Propositions Using Point-Free Equations}}, booktitle = {27th International Conference on Types for Proofs and Programs (TYPES 2021)}, pages = {6:1--6:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-254-9}, ISSN = {1868-8969}, year = {2022}, volume = {239}, editor = {Basold, Henning and Cockx, Jesper and Ghilezan, Silvia}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2021.6}, URN = {urn:nbn:de:0030-drops-167759}, doi = {10.4230/LIPIcs.TYPES.2021.6}, annote = {Keywords: Martin-L\"{o}f’s type theory, intensional type theory, function extensionality, setoid model, homotopy type theory} }
Published in: LIPIcs, Volume 175, 25th International Conference on Types for Proofs and Programs (TYPES 2019)
Ambrus Kaposi, András Kovács, and Ambroise Lafont. For Finitary Induction-Induction, Induction Is Enough. In 25th International Conference on Types for Proofs and Programs (TYPES 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 175, pp. 6:1-6:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{kaposi_et_al:LIPIcs.TYPES.2019.6, author = {Kaposi, Ambrus and Kov\'{a}cs, Andr\'{a}s and Lafont, Ambroise}, title = {{For Finitary Induction-Induction, Induction Is Enough}}, booktitle = {25th International Conference on Types for Proofs and Programs (TYPES 2019)}, pages = {6:1--6:30}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-158-0}, ISSN = {1868-8969}, year = {2020}, volume = {175}, editor = {Bezem, Marc and Mahboubi, Assia}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2019.6}, URN = {urn:nbn:de:0030-drops-130707}, doi = {10.4230/LIPIcs.TYPES.2019.6}, annote = {Keywords: type theory, inductive types, inductive-inductive types} }
Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)
Ambrus Kaposi and Jakob von Raumer. A Syntax for Mutual Inductive Families. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{kaposi_et_al:LIPIcs.FSCD.2020.23, author = {Kaposi, Ambrus and von Raumer, Jakob}, title = {{A Syntax for Mutual Inductive Families}}, booktitle = {5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)}, pages = {23:1--23:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-155-9}, ISSN = {1868-8969}, year = {2020}, volume = {167}, editor = {Ariola, Zena M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.23}, URN = {urn:nbn:de:0030-drops-123451}, doi = {10.4230/LIPIcs.FSCD.2020.23}, annote = {Keywords: type theory, inductive types, mutual inductive types, W-types, Agda} }
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for Type Theory. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{kaposi_et_al:LIPIcs.FSCD.2019.25, author = {Kaposi, Ambrus and Huber, Simon and Sattler, Christian}, title = {{Gluing for Type Theory}}, booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)}, pages = {25:1--25:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-107-8}, ISSN = {1868-8969}, year = {2019}, volume = {131}, editor = {Geuvers, Herman}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.25}, URN = {urn:nbn:de:0030-drops-105323}, doi = {10.4230/LIPIcs.FSCD.2019.25}, annote = {Keywords: Martin-L\"{o}f type theory, logical relations, parametricity, canonicity, quotient inductive types} }
Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)
23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@Proceedings{abel_et_al:LIPIcs.TYPES.2017, title = {{LIPIcs, Volume 104, TYPES'17, Complete Volume}}, booktitle = {23rd International Conference on Types for Proofs and Programs (TYPES 2017)}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-071-2}, ISSN = {1868-8969}, year = {2019}, volume = {104}, editor = {Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017}, URN = {urn:nbn:de:0030-drops-101671}, doi = {10.4230/LIPIcs.TYPES.2017}, annote = {Keywords: Theory of computation, Type theory, Proof theory, Program verification} }
Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)
23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{abel_et_al:LIPIcs.TYPES.2017.0, author = {Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus}, title = {{Front Matter, Table of Contents, Preface, Conference Organization}}, booktitle = {23rd International Conference on Types for Proofs and Programs (TYPES 2017)}, pages = {0:i--0:x}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-071-2}, ISSN = {1868-8969}, year = {2019}, volume = {104}, editor = {Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.0}, URN = {urn:nbn:de:0030-drops-100488}, doi = {10.4230/LIPIcs.TYPES.2017.0}, annote = {Keywords: Front Matter, Table of Contents, Preface, Conference Organization} }
Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)
Guillaume Allais. Typing with Leftovers - A mechanization of Intuitionistic Multiplicative-Additive Linear Logic. In 23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, pp. 1:1-1:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{allais:LIPIcs.TYPES.2017.1, author = {Allais, Guillaume}, title = {{Typing with Leftovers - A mechanization of Intuitionistic Multiplicative-Additive Linear Logic}}, booktitle = {23rd International Conference on Types for Proofs and Programs (TYPES 2017)}, pages = {1:1--1:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-071-2}, ISSN = {1868-8969}, year = {2019}, volume = {104}, editor = {Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.1}, URN = {urn:nbn:de:0030-drops-100490}, doi = {10.4230/LIPIcs.TYPES.2017.1}, annote = {Keywords: Type System, Bidirectional, Linear Logic, Agda} }
Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)
Andrej Dudenhefner and Jakob Rehof. Lower End of the Linial-Post Spectrum. In 23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{dudenhefner_et_al:LIPIcs.TYPES.2017.2, author = {Dudenhefner, Andrej and Rehof, Jakob}, title = {{Lower End of the Linial-Post Spectrum}}, booktitle = {23rd International Conference on Types for Proofs and Programs (TYPES 2017)}, pages = {2:1--2:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-071-2}, ISSN = {1868-8969}, year = {2019}, volume = {104}, editor = {Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.2}, URN = {urn:nbn:de:0030-drops-100503}, doi = {10.4230/LIPIcs.TYPES.2017.2}, annote = {Keywords: combinatory logic, lambda calculus, type theory, simple types, inhabitation, principal type} }
Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)
Herman Geuvers and Tonny Hurkens. Proof Terms for Generalized Natural Deduction. In 23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, pp. 3:1-3:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{geuvers_et_al:LIPIcs.TYPES.2017.3, author = {Geuvers, Herman and Hurkens, Tonny}, title = {{Proof Terms for Generalized Natural Deduction}}, booktitle = {23rd International Conference on Types for Proofs and Programs (TYPES 2017)}, pages = {3:1--3:39}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-071-2}, ISSN = {1868-8969}, year = {2019}, volume = {104}, editor = {Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.3}, URN = {urn:nbn:de:0030-drops-100519}, doi = {10.4230/LIPIcs.TYPES.2017.3}, annote = {Keywords: constructive logic, natural deduction, detour conversion, permutation conversion, normalization Curry-Howard isomorphism} }
Feedback for Dagstuhl Publishing