13 Search Results for "Kiefer, Sandra"


Document
Short Paper
Assessing Perceived Route Difficulty in Environments with Different Complexity (Short Paper)

Authors: Arvid Horned, Zoe Falomir, and Kai-Florian Richter

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Today, anyone feeling lost in a city or unsure about how to navigate can use navigation services to look up routes to where they want to go. Current research investigating these services has primarily focused on how to find an appropriate route and how to best support navigation along it, and not how routes and the maps they are presented on are perceived. What makes one route look more difficult to navigate than another? And how does experience with using navigation services and maps in daily life influence how difficult a route is perceived to be? We explored these questions in a survey study where participants rated the perceived difficulty of pedestrian routes in ten different cities. The results show that routes in more complex urban environments were perceived as more complex than routes in easier environments. At least partly, perceived difficulty seems to follow earlier conceptualizations of route complexity, but open questions remain regarding the interplay of environmental structure, route properties, and the map representation.

Cite as

Arvid Horned, Zoe Falomir, and Kai-Florian Richter. Assessing Perceived Route Difficulty in Environments with Different Complexity (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 29:1-29:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{horned_et_al:LIPIcs.COSIT.2024.29,
  author =	{Horned, Arvid and Falomir, Zoe and Richter, Kai-Florian},
  title =	{{Assessing Perceived Route Difficulty in Environments with Different Complexity}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{29:1--29:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.29},
  URN =		{urn:nbn:de:0030-drops-208444},
  doi =		{10.4230/LIPIcs.COSIT.2024.29},
  annote =	{Keywords: navigation complexity, perceived difficulty, route display, spatial cognition}
}
Document
Track A: Algorithms, Complexity and Games
Isomorphism for Tournaments of Small Twin Width

Authors: Martin Grohe and Daniel Neuen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We prove that isomorphism of tournaments of twin width at most k can be decided in time k^O(log k) n^O(1). This implies that the isomorphism problem for classes of tournaments of bounded or moderately growing twin width is in polynomial time. By comparison, there are classes of undirected graphs of bounded twin width that are isomorphism complete, that is, the isomorphism problem for the classes is as hard as the general graph isomorphism problem. Twin width is a graph parameter that has been introduced only recently (Bonnet et al., FOCS 2020), but has received a lot of attention in structural graph theory since then. On directed graphs, it is functionally smaller than clique width. We prove that on tournaments (but not on general directed graphs) it is also functionally smaller than directed tree width (and thus, the same also holds for cut width and directed path width). Hence, our result implies that tournament isomorphism testing is also fixed-parameter tractable when parameterized by any of these parameters. Our isomorphism algorithm heavily employs group-theoretic techniques. This seems to be necessary: as a second main result, we show that the combinatorial Weisfeiler-Leman algorithm does not decide isomorphism of tournaments of twin width at most 35 if its dimension is o(n). (Throughout this abstract, n is the order of the input graphs.)

Cite as

Martin Grohe and Daniel Neuen. Isomorphism for Tournaments of Small Twin Width. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2024.78,
  author =	{Grohe, Martin and Neuen, Daniel},
  title =	{{Isomorphism for Tournaments of Small Twin Width}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.78},
  URN =		{urn:nbn:de:0030-drops-202216},
  doi =		{10.4230/LIPIcs.ICALP.2024.78},
  annote =	{Keywords: tournament isomorphism, twin width, fixed-parameter tractability, Weisfeiler-Leman algorithm}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Edit Distance of Finite State Transducers

Authors: C. Aiswarya, Amaldev Manuel, and Saina Sunny

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We lift metrics over words to metrics over word-to-word transductions, by defining the distance between two transductions as the supremum of the distances of their respective outputs over all inputs. This allows to compare transducers beyond equivalence. Two transducers are close (resp. k-close) with respect to a metric if their distance is finite (resp. at most k). Over integer-valued metrics computing the distance between transducers is equivalent to deciding the closeness and k-closeness problems. For common integer-valued edit distances such as, Hamming, transposition, conjugacy and Levenshtein family of distances, we show that the closeness and the k-closeness problems are decidable for functional transducers. Hence, the distance with respect to these metrics is also computable. Finally, we relate the notion of distance between functions to the notions of diameter of a relation and index of a relation in another. We show that computing edit distance between functional transducers is equivalent to computing diameter of a rational relation and both are a specific instance of the index problem of rational relations.

Cite as

C. Aiswarya, Amaldev Manuel, and Saina Sunny. Edit Distance of Finite State Transducers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 125:1-125:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aiswarya_et_al:LIPIcs.ICALP.2024.125,
  author =	{Aiswarya, C. and Manuel, Amaldev and Sunny, Saina},
  title =	{{Edit Distance of Finite State Transducers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{125:1--125:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.125},
  URN =		{urn:nbn:de:0030-drops-202682},
  doi =		{10.4230/LIPIcs.ICALP.2024.125},
  annote =	{Keywords: transducers, edit distance, conjugacy}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Verification of Population Protocols with Unordered Data

Authors: Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger, and Chana Weil-Kennedy

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Population protocols are a well-studied model of distributed computation in which a group of anonymous finite-state agents communicates via pairwise interactions. Together they decide whether their initial configuration, i. e., the initial distribution of agents in the states, satisfies a property. As an extension in order to express properties of multisets over an infinite data domain, Blondin and Ladouceur (ICALP'23) introduced population protocols with unordered data (PPUD). In PPUD, each agent carries a fixed data value, and the interactions between agents depend on whether their data are equal or not. Blondin and Ladouceur also identified the interesting subclass of immediate observation PPUD (IOPPUD), where in every transition one of the two agents remains passive and does not move, and they characterised its expressive power. We study the decidability and complexity of formally verifying these protocols. The main verification problem for population protocols is well-specification, that is, checking whether the given PPUD computes some function. We show that well-specification is undecidable in general. By contrast, for IOPPUD, we exhibit a large yet natural class of problems, which includes well-specification among other classic problems, and establish that these problems are in ExpSpace. We also provide a lower complexity bound, namely coNExpTime-hardness.

Cite as

Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger, and Chana Weil-Kennedy. Verification of Population Protocols with Unordered Data. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 156:1-156:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanbergerem_et_al:LIPIcs.ICALP.2024.156,
  author =	{van Bergerem, Steffen and Guttenberg, Roland and Kiefer, Sandra and Mascle, Corto and Waldburger, Nicolas and Weil-Kennedy, Chana},
  title =	{{Verification of Population Protocols with Unordered Data}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{156:1--156:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.156},
  URN =		{urn:nbn:de:0030-drops-202993},
  doi =		{10.4230/LIPIcs.ICALP.2024.156},
  annote =	{Keywords: Population protocols, Parameterized verification, Distributed computing, Well-specification}
}
Document
Track A: Algorithms, Complexity and Games
A Study of Weisfeiler-Leman Colorings on Planar Graphs

Authors: Sandra Kiefer and Daniel Neuen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The Weisfeiler-Leman (WL) algorithm is a combinatorial procedure that computes colorings on graphs, which can often be used to detect their (non-)isomorphism. Particularly the 1- and 2-dimensional versions 1-WL and 2-WL have received much attention, due to their numerous links to other areas of computer science. Knowing the expressive power of a certain dimension of the algorithm usually amounts to understanding the computed colorings. An increase in the dimension leads to finer computed colorings and, thus, more graphs can be distinguished. For example, on the class of planar graphs, 3-WL solves the isomorphism problem. However, the expressive power of 2-WL on the class is poorly understood (and, in particular, it may even well be that it decides isomorphism). In this paper, we investigate the colorings computed by 2-WL on planar graphs. Towards this end, we analyze the graphs induced by edge color classes in the graph. Based on the obtained classification, we show that for every 3-connected planar graph, it holds that: a) after coloring all pairs with their 2-WL color, the graph has fixing number 1 with respect to 1-WL, or b) there is a 2-WL-definable matching that can be used to transform the graph into a smaller one, or c) 2-WL detects a connected subgraph that is essentially the graph of a Platonic or Archimedean solid, a prism, a cycle, or a bipartite graph K_{2,𝓁}. In particular, the graphs from case (a) are identified by 2-WL.

Cite as

Sandra Kiefer and Daniel Neuen. A Study of Weisfeiler-Leman Colorings on Planar Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 81:1-81:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.ICALP.2022.81,
  author =	{Kiefer, Sandra and Neuen, Daniel},
  title =	{{A Study of Weisfeiler-Leman Colorings on Planar Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{81:1--81:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.81},
  URN =		{urn:nbn:de:0030-drops-164228},
  doi =		{10.4230/LIPIcs.ICALP.2022.81},
  annote =	{Keywords: Weisfeiler-Leman algorithm, planar graphs, edge-transitive graphs, fixing number}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Logarithmic Weisfeiler-Leman Identifies All Planar Graphs

Authors: Martin Grohe and Sandra Kiefer

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The Weisfeiler-Leman (WL) algorithm is a well-known combinatorial procedure for detecting symmetries in graphs and it is widely used in graph-isomorphism tests. It proceeds by iteratively refining a colouring of vertex tuples. The number of iterations needed to obtain the final output is crucial for the parallelisability of the algorithm. We show that there is a constant k such that every planar graph can be identified (that is, distinguished from every non-isomorphic graph) by the k-dimensional WL algorithm within a logarithmic number of iterations. This generalises a result due to Verbitsky (STACS 2007), who proved the same for 3-connected planar graphs. The number of iterations needed by the k-dimensional WL algorithm to identify a graph corresponds to the quantifier depth of a sentence that defines the graph in the (k+1)-variable fragment C^{k+1} of first-order logic with counting quantifiers. Thus, our result implies that every planar graph is definable with a C^{k+1}-sentence of logarithmic quantifier depth.

Cite as

Martin Grohe and Sandra Kiefer. Logarithmic Weisfeiler-Leman Identifies All Planar Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 134:1-134:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2021.134,
  author =	{Grohe, Martin and Kiefer, Sandra},
  title =	{{Logarithmic Weisfeiler-Leman Identifies All Planar Graphs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{134:1--134:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.134},
  URN =		{urn:nbn:de:0030-drops-142035},
  doi =		{10.4230/LIPIcs.ICALP.2021.134},
  annote =	{Keywords: Weisfeiler-Leman algorithm, finite-variable logic, isomorphism testing, planar graphs, quantifier depth, iteration number}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Comparison-Free Polyregular Functions

Authors: Lê Thành Dũng (Tito) Nguyễn, Camille Noûs, and Pierre Pradic

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
This paper introduces a new automata-theoretic class of string-to-string functions with polynomial growth. Several equivalent definitions are provided: a machine model which is a restricted variant of pebble transducers, and a few inductive definitions that close the class of regular functions under certain operations. Our motivation for studying this class comes from another characterization, which we merely mention here but prove elsewhere, based on a λ-calculus with a linear type system. As their name suggests, these comparison-free polyregular functions form a subclass of polyregular functions; we prove that the inclusion is strict. We also show that they are incomparable with HDT0L transductions, closed under usual function composition - but not under a certain "map" combinator - and satisfy a comparison-free version of the pebble minimization theorem. On the broader topic of polynomial growth transductions, we also consider the recently introduced layered streaming string transducers (SSTs), or equivalently k-marble transducers. We prove that a function can be obtained by composing such transducers together if and only if it is polyregular, and that k-layered SSTs (or k-marble transducers) are closed under "map" and equivalent to a corresponding notion of (k+1)-layered HDT0L systems.

Cite as

Lê Thành Dũng (Tito) Nguyễn, Camille Noûs, and Pierre Pradic. Comparison-Free Polyregular Functions. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 139:1-139:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.ICALP.2021.139,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and No\^{u}s, Camille and Pradic, Pierre},
  title =	{{Comparison-Free Polyregular Functions}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{139:1--139:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.139},
  URN =		{urn:nbn:de:0030-drops-142087},
  doi =		{10.4230/LIPIcs.ICALP.2021.139},
  annote =	{Keywords: pebble transducers, HDT0L systems, polyregular functions}
}
Document
Learning Concepts Described By Weight Aggregation Logic

Authors: Steffen van Bergerem and Nicole Schweikardt

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
We consider weighted structures, which extend ordinary relational structures by assigning weights, i.e. elements from a particular group or ring, to tuples present in the structure. We introduce an extension of first-order logic that allows to aggregate weights of tuples, compare such aggregates, and use them to build more complex formulas. We provide locality properties of fragments of this logic including Feferman-Vaught decompositions and a Gaifman normal form for a fragment called FOW₁, as well as a localisation theorem for a larger fragment called FOWA₁. This fragment can express concepts from various machine learning scenarios. Using the locality properties, we show that concepts definable in FOWA₁ over a weighted background structure of at most polylogarithmic degree are agnostically PAC-learnable in polylogarithmic time after pseudo-linear time preprocessing.

Cite as

Steffen van Bergerem and Nicole Schweikardt. Learning Concepts Described By Weight Aggregation Logic. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vanbergerem_et_al:LIPIcs.CSL.2021.10,
  author =	{van Bergerem, Steffen and Schweikardt, Nicole},
  title =	{{Learning Concepts Described By Weight Aggregation Logic}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.10},
  URN =		{urn:nbn:de:0030-drops-134447},
  doi =		{10.4230/LIPIcs.CSL.2021.10},
  annote =	{Keywords: first-order definable concept learning, agnostic probably approximately correct learning, classification problems, locality, Feferman-Vaught decomposition, Gaifman normal form, first-order logic with counting, weight aggregation logic}
}
Document
Track A: Algorithms, Complexity and Games
The Iteration Number of Colour Refinement

Authors: Sandra Kiefer and Brendan D. McKay

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The Colour Refinement procedure and its generalisation to higher dimensions, the Weisfeiler-Leman algorithm, are central subroutines in approaches to the graph isomorphism problem. In an iterative fashion, Colour Refinement computes a colouring of the vertices of its input graph. A trivial upper bound on the iteration number of Colour Refinement on graphs of order n is n-1. We show that this bound is tight. More precisely, we prove via explicit constructions that there are infinitely many graphs G on which Colour Refinement takes |G|-1 iterations to stabilise. Modifying the infinite families that we present, we show that for every natural number n ≥ 10, there are graphs on n vertices on which Colour Refinement requires at least n-2 iterations to reach stabilisation.

Cite as

Sandra Kiefer and Brendan D. McKay. The Iteration Number of Colour Refinement. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 73:1-73:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.ICALP.2020.73,
  author =	{Kiefer, Sandra and McKay, Brendan D.},
  title =	{{The Iteration Number of Colour Refinement}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{73:1--73:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.73},
  URN =		{urn:nbn:de:0030-drops-124801},
  doi =		{10.4230/LIPIcs.ICALP.2020.73},
  annote =	{Keywords: Colour Refinement, iteration number, Weisfeiler-Leman algorithm, quantifier depth}
}
Document
The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs

Authors: Sandra Kiefer and Daniel Neuen

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
The Weisfeiler-Leman procedure is a widely-used approach for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into bi- and triconnected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its triconnected components. Thus, the dimension of the algorithm needed to distinguish two given graphs is at most the dimension required to distinguish the corresponding decompositions into 3-connected components (assuming dimension at least 2). This result implies that for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of graphs of treewidth at most k. Using a construction by Cai, Fürer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.

Cite as

Sandra Kiefer and Daniel Neuen. The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 45:1-45:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.MFCS.2019.45,
  author =	{Kiefer, Sandra and Neuen, Daniel},
  title =	{{The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{45:1--45:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.45},
  URN =		{urn:nbn:de:0030-drops-109893},
  doi =		{10.4230/LIPIcs.MFCS.2019.45},
  annote =	{Keywords: Weisfeiler-Leman, separators, first-order logic, counting quantifiers}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
String-to-String Interpretations With Polynomial-Size Output (Track B: Automata, Logic, Semantics, and Theory of Programming)

Authors: Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
String-to-string MSO interpretations are like Courcelle’s MSO transductions, except that a single output position can be represented using a tuple of input positions instead of just a single input position. In particular, the output length is polynomial in the input length, as opposed to MSO transductions, which have output of linear length. We show that string-to-string MSO interpretations are exactly the polyregular functions. The latter class has various characterisations, one of which is that it consists of the string-to-string functions recognised by pebble transducers. Our main result implies the surprising fact that string-to-string MSO interpretations are closed under composition.

Cite as

Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-String Interpretations With Polynomial-Size Output (Track B: Automata, Logic, Semantics, and Theory of Programming). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 106:1-106:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.ICALP.2019.106,
  author =	{Boja\'{n}czyk, Miko{\l}aj and Kiefer, Sandra and Lhote, Nathan},
  title =	{{String-to-String Interpretations With Polynomial-Size Output}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{106:1--106:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.106},
  URN =		{urn:nbn:de:0030-drops-106821},
  doi =		{10.4230/LIPIcs.ICALP.2019.106},
  annote =	{Keywords: MSO, interpretations, pebble transducers, polyregular functions}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Linear Upper Bound on the Weisfeiler-Leman Dimension of Graphs of Bounded Genus (Track B: Automata, Logic, Semantics, and Theory of Programming)

Authors: Martin Grohe and Sandra Kiefer

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The Weisfeiler-Leman (WL) dimension of a graph is a measure for the inherent descriptive complexity of the graph. While originally derived from a combinatorial graph isomorphism test called the Weisfeiler-Leman algorithm, the WL dimension can also be characterised in terms of the number of variables that is required to describe the graph up to isomorphism in first-order logic with counting quantifiers. It is known that the WL dimension is upper-bounded for all graphs that exclude some fixed graph as a minor [M. Grohe, 2017]. However, the bounds that can be derived from this general result are astronomic. Only recently, it was proved that the WL dimension of planar graphs is at most 3 [S. Kiefer et al., 2017]. In this paper, we prove that the WL dimension of graphs embeddable in a surface of Euler genus g is at most 4g+3. For the WL dimension of graphs embeddable in an orientable surface of Euler genus g, our approach yields an upper bound of 2g + 3.

Cite as

Martin Grohe and Sandra Kiefer. A Linear Upper Bound on the Weisfeiler-Leman Dimension of Graphs of Bounded Genus (Track B: Automata, Logic, Semantics, and Theory of Programming). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 117:1-117:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2019.117,
  author =	{Grohe, Martin and Kiefer, Sandra},
  title =	{{A Linear Upper Bound on the Weisfeiler-Leman Dimension of Graphs of Bounded Genus}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{117:1--117:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.117},
  URN =		{urn:nbn:de:0030-drops-106931},
  doi =		{10.4230/LIPIcs.ICALP.2019.117},
  annote =	{Keywords: Weisfeiler-Leman algorithm, finite-variable logic, isomorphism testing, planar graphs, bounded genus}
}
  • Refine by Author
  • 7 Kiefer, Sandra
  • 3 Grohe, Martin
  • 3 Neuen, Daniel
  • 2 van Bergerem, Steffen
  • 1 Aiswarya, C.
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Finite Model Theory
  • 3 Mathematics of computing → Combinatorial algorithms
  • 3 Mathematics of computing → Graph theory
  • 3 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Transducers
  • Show More...

  • Refine by Keyword
  • 5 Weisfeiler-Leman algorithm
  • 3 planar graphs
  • 2 finite-variable logic
  • 2 isomorphism testing
  • 2 iteration number
  • Show More...

  • Refine by Type
  • 13 document

  • Refine by Publication Year
  • 5 2024
  • 3 2019
  • 3 2021
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail