33 Search Results for "Klein, Philip N."


Document
Longest Common Substring with Gaps and Related Problems

Authors: Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The longest common substring (also known as longest common factor) and longest common subsequence problems are two well-studied classical string problems. The former is solvable in optimal 𝒪(n) time for two strings of length m and n with m ≤ n, and the latter is solvable in 𝒪(nm) time, which is conditionally optimal under the Strong Exponential Time Hypothesis. In this work, we study the problem of longest common factor with gaps, that is, finding a set of at most k matching substrings obeying precedence conditions with maximum total length. For k = 1, this is equivalent to the longest common factor problem, and for k = m, this is equivalent to the longest common subsequence problem. Our work demonstrates that, for constant k, this problem can be solved in strongly subquadratic time, i.e., nm^{1 - Θ(1)}. Motivated by co-linear chaining applications in Computational Biology, we further demonstrate that the longest common factor with gaps results can be extended to the case where the matches are restricted to maximal exact matches (MEMs). To further demonstrate the applicability of our techniques, we show that a similar approach can be used for a restricted version of the episode matching problem where one seeks an ordered set of at most k matches whose concatenation equals a query pattern P and the length of the substring of T containing the matches is minimized. These solutions all run in strongly subquadratic time for constant k.

Cite as

Aranya Banerjee, Daniel Gibney, and Sharma V. Thankachan. Longest Common Substring with Gaps and Related Problems. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banerjee_et_al:LIPIcs.ESA.2024.16,
  author =	{Banerjee, Aranya and Gibney, Daniel and Thankachan, Sharma V.},
  title =	{{Longest Common Substring with Gaps and Related Problems}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.16},
  URN =		{urn:nbn:de:0030-drops-210877},
  doi =		{10.4230/LIPIcs.ESA.2024.16},
  annote =	{Keywords: Pattern Matching, Longest Common Subsequence, Episode Matching}
}
Document
From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs

Authors: Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).

Cite as

Chandra Chekuri, Rhea Jain, Shubhang Kulkarni, Da Wei Zheng, and Weihao Zhu. From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ESA.2024.42,
  author =	{Chekuri, Chandra and Jain, Rhea and Kulkarni, Shubhang and Zheng, Da Wei and Zhu, Weihao},
  title =	{{From Directed Steiner Tree to Directed Polymatroid Steiner Tree in Planar Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.42},
  URN =		{urn:nbn:de:0030-drops-211134},
  doi =		{10.4230/LIPIcs.ESA.2024.42},
  annote =	{Keywords: Directed Planar Graphs, Submodular Functions, Steiner Tree, Network Design}
}
Document
Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem

Authors: Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing budget constraint. While no incremental solution exists that simultaneously approximates the optimum for all budgets, we show that a bicriterial (α,μ)-approximation is possible, i.e., a solution that with budget B+α for all B ∈ ℝ_{≥ 0} is a multiplicative μ-approximation compared to the optimum solution with budget B. For the case that the underlying graph is a tree, we present a polynomial-time density-greedy algorithm that computes a (χ,1)-approximation, where χ denotes the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An adaptation of the density-greedy algorithm for general graphs is (γ,2)-competitive where γ is the maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in polynomial time, it can be adapted to a (γ,3)-competitive algorithm that runs in polynomial time. We further devise a capacity-scaling algorithm that guarantees a (3χ,8)-approximation and, more generally, a ((4𝓁 - 1)χ, (2^{𝓁 + 2})/(2^𝓁 -1))-approximation for every fixed 𝓁 ∈ ℕ.

Cite as

Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz. Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{disser_et_al:LIPIcs.ESA.2024.47,
  author =	{Disser, Yann and Griesbach, Svenja M. and Klimm, Max and Lutz, Annette},
  title =	{{Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{47:1--47:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.47},
  URN =		{urn:nbn:de:0030-drops-211188},
  doi =		{10.4230/LIPIcs.ESA.2024.47},
  annote =	{Keywords: incremental optimization, competitive analysis, prize-collecting Steiner-tree}
}
Document
Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs

Authors: Sally Dong and Guanghao Ye

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We present an algorithm for min-cost flow in graphs with n vertices and m edges, given a tree decomposition of width τ and size S, and polynomially bounded, integral edge capacities and costs, running in Õ(m√{τ} + S) time. This improves upon the previous fastest algorithm in this setting achieved by the bounded-treewidth linear program solver of [Gu and Song, 2022; Dong et al., 2024], which runs in Õ(m τ^{(ω+1)/2}) time, where ω ≈ 2.37 is the matrix multiplication exponent. Our approach leverages recent advances in structured linear program solvers and robust interior point methods (IPM). In general graphs where treewidth is trivially bounded by n, the algorithm runs in Õ(m √ n) time, which is the best-known result without using the Lee-Sidford barrier or 𝓁₁ IPM, demonstrating the surprising power of robust interior point methods. As a corollary, we obtain a Õ(tw³ ⋅ m) time algorithm to compute a tree decomposition of width O(tw⋅ log(n)), given a graph with m edges.

Cite as

Sally Dong and Guanghao Ye. Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.ESA.2024.49,
  author =	{Dong, Sally and Ye, Guanghao},
  title =	{{Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{49:1--49:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.49},
  URN =		{urn:nbn:de:0030-drops-211207},
  doi =		{10.4230/LIPIcs.ESA.2024.49},
  annote =	{Keywords: Min-cost flow, tree decomposition, interior point method, bounded treewidth graphs}
}
Document
Shortest Path Separators in Unit Disk Graphs

Authors: Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths combined with the 1-hop neighbours of those paths and two other vertices. This answers an open problem of Yan, Xiang and Dragan [CGTA '12] and improves their result that requires removing the 3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay triangulations and a generalization of the celebrated balanced separator theorem of Lipton and Tarjan [J. Appl. Math. '79] to systems of non-intersecting paths.

Cite as

Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng. Shortest Path Separators in Unit Disk Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harb_et_al:LIPIcs.ESA.2024.66,
  author =	{Harb, Elfarouk and Huang, Zhengcheng and Zheng, Da Wei},
  title =	{{Shortest Path Separators in Unit Disk Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{66:1--66:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.66},
  URN =		{urn:nbn:de:0030-drops-211375},
  doi =		{10.4230/LIPIcs.ESA.2024.66},
  annote =	{Keywords: Balanced shortest path separators, unit disk graphs, crossings}
}
Document
Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard

Authors: Klaus Heeger and Danny Hermelin

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the 1∣∣∑ w_jU_j problem, the problem of minimizing the weighted number of tardy jobs on a single machine. This problem is one of the most basic and fundamental problems in scheduling theory, with several different applications both in theory and practice. Using a reduction from the Multicolored Clique problem, we prove that 1∣∣∑ w_jU_j is W[1]-hard with respect to the number p_# of different processing times in the input, as well as with respect to the number w_# of different weights in the input. This, along with previous work, provides a complete picture for 1∣∣∑ w_jU_j from the perspective of parameterized complexity, as well as almost tight complexity bounds for the problem under the Exponential Time Hypothesis (ETH).

Cite as

Klaus Heeger and Danny Hermelin. Minimizing the Weighted Number of Tardy Jobs Is W[1]-Hard. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 68:1-68:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heeger_et_al:LIPIcs.ESA.2024.68,
  author =	{Heeger, Klaus and Hermelin, Danny},
  title =	{{Minimizing the Weighted Number of Tardy Jobs Is W\lbrack1\rbrack-Hard}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{68:1--68:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.68},
  URN =		{urn:nbn:de:0030-drops-211392},
  doi =		{10.4230/LIPIcs.ESA.2024.68},
  annote =	{Keywords: single-machine scheduling, number of different weights, number of different processing times}
}
Document
Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set

Authors: Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
For a tree decomposition 𝒯 of a graph G, by μ(𝒯) we denote the size of a largest induced matching in G all of whose edges intersect one bag of 𝒯. The induced matching treewidth of a graph G is the minimum value of μ(𝒯) over all tree decompositions 𝒯 of G. Yolov [SODA 2018] proved that for graphs of bounded induced matching treewidth, tree decompositions with bounded μ(𝒯) can be computed in polynomial time and Max Weight Independent Set can be solved in polynomial time. In this paper we explore what other problems are tractable in such classes of graphs. As our main result, we give a polynomial-time algorithm for Min Weight Feedback Vertex Set. We also provide some positive results concerning packing induced subgraphs, which in particular imply a PTAS for the problem of finding a largest induced subgraph of bounded treewidth. These results suggest that in graphs of bounded induced matching treewidth, one could find in polynomial time a maximum-weight induced subgraph of bounded treewidth satisfying a given CMSO₂ formula. We conjecture that such a result indeed holds and prove it for graphs of bounded tree-independence number, which form a rich and important family of subclasses of graphs of bounded induced matching treewidth. We complement these algorithmic results with a number of complexity and structural results concerning induced matching treewidth, including a linear relation to treewidth for graphs with bounded degree.

Cite as

Paloma T. Lima, Martin Milanič, Peter Muršič, Karolina Okrasa, Paweł Rzążewski, and Kenny Štorgel. Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lima_et_al:LIPIcs.ESA.2024.85,
  author =	{Lima, Paloma T. and Milani\v{c}, Martin and Mur\v{s}i\v{c}, Peter and Okrasa, Karolina and Rz\k{a}\.{z}ewski, Pawe{\l} and \v{S}torgel, Kenny},
  title =	{{Tree Decompositions Meet Induced Matchings: Beyond Max Weight Independent Set}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{85:1--85:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.85},
  URN =		{urn:nbn:de:0030-drops-211569},
  doi =		{10.4230/LIPIcs.ESA.2024.85},
  annote =	{Keywords: induced matching treewidth, tree-independence number, feedback vertex set, induced packing, algorithmic meta-theorem}
}
Document
Euclidean Capacitated Vehicle Routing in the Random Setting: A 1.55-Approximation Algorithm

Authors: Zipei Nie and Hang Zhou

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the unit-demand capacitated vehicle routing problem in the random setting of the Euclidean plane. The objective is to visit n random terminals in a square using a set of tours of minimum total length, such that each tour visits the depot and at most k terminals. We design an algorithm combining the classical sweep heuristic and the framework for the Euclidean traveling salesman problem due to Arora [J. ACM 1998] and Mitchell [SICOMP 1999]. We show that our algorithm is a polynomial-time approximation of ratio at most 1.55 asymptotically almost surely. This improves on the prior ratio of 1.915 due to Mathieu and Zhou [RSA 2022]. In addition, we conjecture that, for any ε > 0, our algorithm is a (1+ε)-approximation asymptotically almost surely.

Cite as

Zipei Nie and Hang Zhou. Euclidean Capacitated Vehicle Routing in the Random Setting: A 1.55-Approximation Algorithm. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 91:1-91:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{nie_et_al:LIPIcs.ESA.2024.91,
  author =	{Nie, Zipei and Zhou, Hang},
  title =	{{Euclidean Capacitated Vehicle Routing in the Random Setting: A 1.55-Approximation Algorithm}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{91:1--91:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.91},
  URN =		{urn:nbn:de:0030-drops-211627},
  doi =		{10.4230/LIPIcs.ESA.2024.91},
  annote =	{Keywords: capacitated vehicle routing, approximation algorithm, combinatorial optimization}
}
Document
APPROX
Hybrid k-Clustering: Blending k-Median and k-Center

Authors: Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We propose a novel clustering model encompassing two well-known clustering models: k-center clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points in ℝ^d, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently, we seek an optimal L₁-fitting of a union of k balls of radius r to a set of points in the Euclidean space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating complete coverage of all points, it is k-center. Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a hybrid k-clustering with balls of radius (1+ε)r. This algorithm achieves a cost at most 1+ε of the optimum, and it operates in time 2^{(kd/ε)^𝒪(1)} ⋅ n^𝒪(1). Notably, considering the established lower bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for Hybrid k-Clustering.

Cite as

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi. Hybrid k-Clustering: Blending k-Median and k-Center. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.APPROX/RANDOM.2024.4,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Inamdar, Tanmay and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Hybrid k-Clustering: Blending k-Median and k-Center}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.4},
  URN =		{urn:nbn:de:0030-drops-209975},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.4},
  annote =	{Keywords: clustering, k-center, k-median, Euclidean space, fpt approximation}
}
Document
APPROX
Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Authors: Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Noam Touitou, 2023] developed a non-clairvoyant framework that provided an O(√{n log n}) upper bound for a wide class of generalized JRP, where n is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight O(√n)-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou’s algorithm is Ω(√{n log n})-competitive for both of these problems.

Cite as

Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh. Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.APPROX/RANDOM.2024.12,
  author =	{Ezra, Tomer and Leonardi, Stefano and Paw{\l}owski, Micha{\l} and Russo, Matteo and Umboh, Seeun William},
  title =	{{Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  URN =		{urn:nbn:de:0030-drops-210050},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  annote =	{Keywords: Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function Approximation, Multi-Level Aggregation}
}
Document
Failure Transparency in Stateful Dataflow Systems

Authors: Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Failure transparency enables users to reason about distributed systems at a higher level of abstraction, where complex failure-handling logic is hidden. This is especially true for stateful dataflow systems, which are the backbone of many cloud applications. In particular, this paper focuses on proving failure transparency in Apache Flink, a popular stateful dataflow system. Even though failure transparency is a critical aspect of Apache Flink, to date it has not been formally proven. Showing that the failure transparency mechanism is correct, however, is challenging due to the complexity of the mechanism itself. Nevertheless, this complexity can be effectively hidden behind a failure transparent programming interface. To show that Apache Flink is failure transparent, we model it in small-step operational semantics. Next, we provide a novel definition of failure transparency based on observational explainability, a concept which relates executions according to their observations. Finally, we provide a formal proof of failure transparency for the implementation model; i.e., we prove that the failure-free model correctly abstracts from the failure-related details of the implementation model. We also show liveness of the implementation model under a fair execution assumption. These results are a first step towards a verified stack for stateful dataflow systems.

Cite as

Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller. Failure Transparency in Stateful Dataflow Systems. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 42:1-42:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{veresov_et_al:LIPIcs.ECOOP.2024.42,
  author =	{Veresov, Aleksey and Spenger, Jonas and Carbone, Paris and Haller, Philipp},
  title =	{{Failure Transparency in Stateful Dataflow Systems}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{42:1--42:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.42},
  URN =		{urn:nbn:de:0030-drops-208911},
  doi =		{10.4230/LIPIcs.ECOOP.2024.42},
  annote =	{Keywords: Failure transparency, stateful dataflow, operational semantics, checkpoint recovery}
}
Document
Memoization on Shared Subtrees Accelerates Computations on Genealogical Forests

Authors: Lukas Hübner and Alexandros Stamatakis

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The field of population genetics attempts to advance our understanding of evolutionary processes. It has applications, for example, in medical research, wildlife conservation, and - in conjunction with recent advances in ancient DNA sequencing technology - studying human migration patterns over the past few thousand years. The basic toolbox of population genetics includes genealogical trees, which describe the shared evolutionary history among individuals of the same species. They are calculated on the basis of genetic variations. However, in recombining organisms, a single tree is insufficient to describe the evolutionary history of the whole genome. Instead, a collection of correlated trees can be used, where each describes the evolutionary history of a consecutive region of the genome. The current corresponding state of-the-art data structure, tree sequences, compresses these genealogical trees via edit operations when moving from one tree to the next along the genome instead of storing the full, often redundant, description for each tree. We propose a new data structure, genealogical forests, which compresses the set of genealogical trees into a DAG. In this DAG identical subtrees that are shared across the input trees are encoded only once, thereby allowing for straight-forward memoization of intermediate results. Additionally, we provide a C++ implementation of our proposed data structure, called gfkit, which is 2.1 to 11.2 (median 4.0) times faster than the state-of-the-art tool on empirical and simulated datasets at computing important population genetics statistics such as the Allele Frequency Spectrum, Patterson’s f, the Fixation Index, Tajima’s D, pairwise Lowest Common Ancestors, and others. On Lowest Common Ancestor queries with more than two samples as input, gfkit scales asymptotically better than the state-of-the-art, and is thus up to 990 times faster. In conclusion, our proposed data structure compresses genealogical trees by storing shared subtrees only once, thereby enabling straight-forward memoization of intermediate results, yielding a substantial runtime reduction and a potentially more intuitive data representation over the state-of-the-art. Our improvements will boost the development of novel analyses and models in the field of population genetics and increases scalability to ever-growing genomic datasets.

Cite as

Lukas Hübner and Alexandros Stamatakis. Memoization on Shared Subtrees Accelerates Computations on Genealogical Forests. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 5:1-5:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hubner_et_al:LIPIcs.WABI.2024.5,
  author =	{H\"{u}bner, Lukas and Stamatakis, Alexandros},
  title =	{{Memoization on Shared Subtrees Accelerates Computations on Genealogical Forests}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{5:1--5:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.5},
  URN =		{urn:nbn:de:0030-drops-206499},
  doi =		{10.4230/LIPIcs.WABI.2024.5},
  annote =	{Keywords: bioinformatics, population genetics, algorithms}
}
Document
Multiway Cuts with a Choice of Representatives

Authors: Kristóf Bérczi, Tamás Király, and Daniel P. Szabo

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Multiway Cut problem, we are given an undirected graph with nonnegative edge weights and a subset of k terminals, and the goal is to determine a set of edges of minimum total weight whose removal disconnects each terminal from the rest. The problem is APX-hard for k ≥ 3, and an extensive line of research has concentrated on closing the gap between the best upper and lower bounds for approximability and inapproximability, respectively. In this paper, we study several generalizations of Multiway Cut where the terminals can be chosen as representatives from sets of candidates T₁,…,T_q. In this setting, one is allowed to choose these representatives so that the minimum-weight cut separating these sets via their representatives is as small as possible. We distinguish different cases depending on (A) whether the representative of a candidate set has to be separated from the other candidate sets completely or only from the representatives, and (B) whether there is a single representative for each candidate set or the choice of representative is independent for each pair of candidate sets. For fixed q, we give approximation algorithms for each of these problems that match the best known approximation guarantee for Multiway Cut. Our technical contribution is a new extension of the CKR relaxation that preserves approximation guarantees. For general q, we show o(log q)-inapproximability for all cases where the choice of representatives may depend on the pair of candidate sets, as well as for the case where the goal is to separate a fixed node from a single representative from each candidate set. As a positive result, we give a 2-approximation algorithm for the case where we need to choose a single representative from each candidate set. This is a generalization of the (2-2/k)-approximation for k-Cut, and we can solve it by relating the tree case to optimization over a gammoid.

Cite as

Kristóf Bérczi, Tamás Király, and Daniel P. Szabo. Multiway Cuts with a Choice of Representatives. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.MFCS.2024.25,
  author =	{B\'{e}rczi, Krist\'{o}f and Kir\'{a}ly, Tam\'{a}s and Szabo, Daniel P.},
  title =	{{Multiway Cuts with a Choice of Representatives}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-205813},
  doi =		{10.4230/LIPIcs.MFCS.2024.25},
  annote =	{Keywords: Approximation algorithms, Multiway cut, CKR relaxation, Steiner multicut}
}
Document
The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Authors: Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Finding a simple path of even length between two designated vertices in a directed graph is a fundamental NP-complete problem [Andrea S. LaPaugh and Christos H. Papadimitriou, 1984] known as the EP problem. Nedev [Zhivko Prodanov Nedev, 1999] proved in 1999, that for directed planar graphs, the problem can be solved in polynomial time. More than two decades since then, we make the first progress in extending the tractable classes of graphs for this problem. We give a polynomial time algorithm to solve the EP problem for classes of H-minor-free directed graphs, where H is a single-crossing graph. We make two new technical contributions along the way, that might be of independent interest. The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking networks. These are graphs that mimic parities of all possible paths between a designated set of terminals of the original graph. Finding vertex disjoint paths between given source-destination pairs of vertices is another fundamental problem, known to be NP-complete in directed graphs [Steven Fortune et al., 1980], though known to be tractable in planar directed graphs [Alexander Schrijver, 1994]. We encounter a natural variant of this problem, that of finding disjoint paths between given pairs of vertices, but with constraints on parity of the total length of paths. The other significant contribution of our paper is to give a polynomial time algorithm for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions (and also in directed graphs of bounded treewidth).

Cite as

Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma. The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chauhan_et_al:LIPIcs.MFCS.2024.43,
  author =	{Chauhan, Archit and Datta, Samir and Gupta, Chetan and Sharma, Vimal Raj},
  title =	{{The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-205992},
  doi =		{10.4230/LIPIcs.MFCS.2024.43},
  annote =	{Keywords: Graph Algorithms, EvenPath, Polynomial-time Algorithms, Reachability}
}
Document
Monoids of Upper Triangular Matrices over the Boolean Semiring

Authors: Andrew Ryzhikov and Petra Wolf

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a finite set 𝒜 of square matrices and a square matrix B, all of the same dimension, the membership problem asks if B belongs to the monoid ℳ(𝒜) generated by 𝒜. The rank one problem asks if there is a matrix of rank one in ℳ(𝒜). We study the membership and the rank one problems in the case where all matrices are upper triangular matrices over the Boolean semiring. We characterize the computational complexity of these problems, and identify their PSPACE-complete and NP-complete special cases. We then consider, for a set 𝒜 of matrices from the same class, the problem of finding in ℳ(𝒜) a matrix of minimum rank with no zero rows. We show that the minimum rank of such matrix can be computed in linear time.We also characterize the space complexity of this problem depending on the size of 𝒜, and apply all these results to the ergodicity problem asking if ℳ(𝒜) contains a matrix with a column consisting of all ones. Finally, we show that our results give better upper bounds for the case where each row of every matrix in 𝒜 contains at most one non-zero entry than for the general case.

Cite as

Andrew Ryzhikov and Petra Wolf. Monoids of Upper Triangular Matrices over the Boolean Semiring. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 81:1-81:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ryzhikov_et_al:LIPIcs.MFCS.2024.81,
  author =	{Ryzhikov, Andrew and Wolf, Petra},
  title =	{{Monoids of Upper Triangular Matrices over the Boolean Semiring}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{81:1--81:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.81},
  URN =		{urn:nbn:de:0030-drops-206377},
  doi =		{10.4230/LIPIcs.MFCS.2024.81},
  annote =	{Keywords: matrix monoids, membership, rank, ergodicity, partially ordered automata}
}
  • Refine by Author
  • 6 Klein, Philip N.
  • 3 Becker, Amariah
  • 3 Marx, Dániel
  • 2 Fomin, Fedor V.
  • 2 Golovach, Petr A.
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Graph algorithms analysis
  • 4 Theory of computation → Design and analysis of algorithms
  • 4 Theory of computation → Parameterized complexity and exact algorithms
  • 3 Mathematics of computing → Combinatorial optimization
  • 3 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 5 planar graphs
  • 2 Approximation Algorithms
  • 2 Capacitated Vehicle Routing
  • 2 algorithms
  • 1 Algorithm Engineering
  • Show More...

  • Refine by Type
  • 33 document

  • Refine by Publication Year
  • 27 2024
  • 2 2017
  • 1 2015
  • 1 2016
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail