26 Search Results for "Korman, Matias"


Document
Capturing the Shape of a Point Set with a Line Segment

Authors: Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Detecting location-correlated groups in point sets is an important task in a wide variety of applications areas. In addition to merely detecting such groups, the group’s shape carries meaning as well. In this paper, we represent a group’s shape using a simple geometric object, a line segment. Specifically, given a radius r, we say a line segment is representative of a point set P of n points if it is within distance r of each point p ∈ P. We aim to find the shortest such line segment. This problem is equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an algorithm to find the shortest representative segment in O(n log h + h log³h) time, where h is the size of the convex hull of P. Additionally, we show how to maintain a stable approximation of the shortest representative segment when the points in P move.

Cite as

Nathan van Beusekom, Marc van Kreveld, Max van Mulken, Marcel Roeloffzen, Bettina Speckmann, and Jules Wulms. Capturing the Shape of a Point Set with a Line Segment. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanbeusekom_et_al:LIPIcs.MFCS.2024.26,
  author =	{van Beusekom, Nathan and van Kreveld, Marc and van Mulken, Max and Roeloffzen, Marcel and Speckmann, Bettina and Wulms, Jules},
  title =	{{Capturing the Shape of a Point Set with a Line Segment}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.26},
  URN =		{urn:nbn:de:0030-drops-205820},
  doi =		{10.4230/LIPIcs.MFCS.2024.26},
  annote =	{Keywords: Shape descriptor, Stabbing, Rotating calipers}
}
Document
Track A: Algorithms, Complexity and Games
Caching Connections in Matchings

Authors: Yaniv Sadeh and Haim Kaplan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Motivated by the desire to utilize a limited number of configurable optical switches by recent advances in Software Defined Networks (SDNs), we define an online problem which we call the Caching in Matchings problem. This problem has a natural combinatorial structure and therefore may find additional applications in theory and practice. In the Caching in Matchings problem our cache consists of k matchings of connections between servers that form a bipartite graph. To cache a connection we insert it into one of the k matchings possibly evicting at most two other connections from this matching. This problem resembles the problem known as Connection Caching [Cohen et al., 2000], where we also cache connections but our only restriction is that they form a graph with bounded degree k. Our results show a somewhat surprising qualitative separation between the problems: The competitive ratio of any online algorithm for caching in matchings must depend on the size of the graph. Specifically, we give a deterministic O(nk) competitive and randomized O(n log k) competitive algorithms for caching in matchings, where n is the number of servers and k is the number of matchings. We also show that the competitive ratio of any deterministic algorithm is Ω(max(n/k,k)) and of any randomized algorithm is Ω(log (n/(k² log k)) ⋅ log k). In particular, the lower bound for randomized algorithms is Ω(log n) regardless of k, and can be as high as Ω(log² n) if k = n^{1/3}, for example. We also show that if we allow the algorithm to use at least 2k-1 matchings compared to k used by the optimum then we match the competitive ratios of connection catching which are independent of n. Interestingly, we also show that even a single extra matching for the algorithm allows to get substantially better bounds.

Cite as

Yaniv Sadeh and Haim Kaplan. Caching Connections in Matchings. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 120:1-120:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sadeh_et_al:LIPIcs.ICALP.2024.120,
  author =	{Sadeh, Yaniv and Kaplan, Haim},
  title =	{{Caching Connections in Matchings}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{120:1--120:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.120},
  URN =		{urn:nbn:de:0030-drops-202639},
  doi =		{10.4230/LIPIcs.ICALP.2024.120},
  annote =	{Keywords: Caching, Matchings, Caching in Matchings, Edge Coloring, Online Algorithms}
}
Document
A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots in a Quadratic Number of Moves

Authors: Zachary Abel, Hugo A. Akitaya, Scott Duke Kominers, Matias Korman, and Frederick Stock

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
In the modular robot reconfiguration problem, we are given n cube-shaped modules (or robots) as well as two configurations, i.e., placements of the n modules so that their union is face-connected. The goal is to find a sequence of moves that reconfigures the modules from one configuration to the other using "sliding moves," in which a module slides over the face or edge of a neighboring module, maintaining connectivity of the configuration at all times. For many years it has been known that certain module configurations in this model require at least Ω(n²) moves to reconfigure between them. In this paper, we introduce the first universal reconfiguration algorithm - i.e., we show that any n-module configuration can reconfigure itself into any specified n-module configuration using just sliding moves. Our algorithm achieves reconfiguration in O(n²) moves, making it asymptotically tight. We also present a variation that reconfigures in-place, it ensures that throughout the reconfiguration process, all modules, except for one, will be contained in the union of the bounding boxes of the start and end configuration.

Cite as

Zachary Abel, Hugo A. Akitaya, Scott Duke Kominers, Matias Korman, and Frederick Stock. A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots in a Quadratic Number of Moves. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abel_et_al:LIPIcs.SoCG.2024.1,
  author =	{Abel, Zachary and A. Akitaya, Hugo and Kominers, Scott Duke and Korman, Matias and Stock, Frederick},
  title =	{{A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots in a Quadratic Number of Moves}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{1:1--1:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.1},
  URN =		{urn:nbn:de:0030-drops-199468},
  doi =		{10.4230/LIPIcs.SoCG.2024.1},
  annote =	{Keywords: modular reconfigurable robots, sliding cube model, reconfiguration}
}
Document
PSPACE-Hard 2D Super Mario Games: Thirteen Doors

Authors: MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, and Matias Korman

Published in: LIPIcs, Volume 291, 12th International Conference on Fun with Algorithms (FUN 2024)


Abstract
We prove PSPACE-hardness for fifteen games in the Super Mario Bros. 2D platforming video game series. Previously, only the original Super Mario Bros. was known to be PSPACE-hard (FUN 2016), though several of the games we study were known to be NP-hard (FUN 2014). Our reductions build door gadgets with open, close, and traverse traversals, in each case using mechanics unique to the game. While some of our door constructions are similar to those from FUN 2016, those for Super Mario Bros. 2, Super Mario Land 2, Super Mario World 2, and the New Super Mario Bros. series are quite different; notably, the Super Mario Bros. 2 door is extremely difficult. Doors remain elusive for just two 2D Mario games (Super Mario Land and Super Mario Run); we prove that these games are at least NP-hard.

Cite as

MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, and Matias Korman. PSPACE-Hard 2D Super Mario Games: Thirteen Doors. In 12th International Conference on Fun with Algorithms (FUN 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 291, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mithardnessgroup_et_al:LIPIcs.FUN.2024.21,
  author =	{MIT Hardness Group and Ani, Hayashi and Demaine, Erik D. and Hall, Holden and Korman, Matias},
  title =	{{PSPACE-Hard 2D Super Mario Games: Thirteen Doors}},
  booktitle =	{12th International Conference on Fun with Algorithms (FUN 2024)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-314-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{291},
  editor =	{Broder, Andrei Z. and Tamir, Tami},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2024.21},
  URN =		{urn:nbn:de:0030-drops-199295},
  doi =		{10.4230/LIPIcs.FUN.2024.21},
  annote =	{Keywords: video games, computational complexity, PSPACE}
}
Document
Hardness of Token Swapping on Trees

Authors: Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists of one or more swaps on the edges of a matching. We prove that both of these problems remain NP-hard when the graph is restricted to be a tree. These token swapping problems have been studied by disparate groups of researchers in discrete mathematics, theoretical computer science, robot motion planning, game theory, and engineering. Previous work establishes NP-completeness on general graphs (for both problems), constant-factor approximation algorithms, and some poly-time exact algorithms for simple graph classes such as cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied over thirty years ago (as "sorting with a transposition tree") and over twenty-five years ago (as "routing permutations via matchings"), yet their complexities were previously unknown. We also show limitations on approximation of sequential token swapping on trees: we identify a broad class of algorithms that encompass all three known polynomial-time algorithms that achieve the best known approximation factor (which is 2) and show that no such algorithm can achieve an approximation factor less than 2.

Cite as

Oswin Aichholzer, Erik D. Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masárová, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein. Hardness of Token Swapping on Trees. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.ESA.2022.3,
  author =	{Aichholzer, Oswin and Demaine, Erik D. and Korman, Matias and Lubiw, Anna and Lynch, Jayson and Mas\'{a}rov\'{a}, Zuzana and Rudoy, Mikhail and Vassilevska Williams, Virginia and Wein, Nicole},
  title =	{{Hardness of Token Swapping on Trees}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.3},
  URN =		{urn:nbn:de:0030-drops-169413},
  doi =		{10.4230/LIPIcs.ESA.2022.3},
  annote =	{Keywords: Sorting, Token swapping, Trees, NP-hard, Approximation}
}
Document
Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares

Authors: Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
Edge-connected configurations of square modules, which can reconfigure through so-called sliding moves, are a well-established theoretical model for modular robots in two dimensions. Dumitrescu and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one edge-connected configuration of n squares into any other using at most O(n²) sliding moves, while keeping the configuration connected at all times. For certain pairs of configurations, reconfiguration may require Ω(n²) sliding moves. However, significantly fewer moves may be sufficient. We prove that it is NP-hard to minimize the number of sliding moves for a given pair of edge-connected configurations. On the positive side we present Gather&Compact, an input-sensitive in-place algorithm that requires only O( ̄P n) sliding moves to transform one configuration into the other, where ̄P is the maximum perimeter of the two bounding boxes. The squares move within the bounding boxes only, with the exception of at most one square at a time which may move through the positions adjacent to the bounding boxes. The O( ̄P n) bound never exceeds O(n²), and is optimal (up to constant factors) among all bounds parameterized by just n and ̄P. Our algorithm is built on the basic principle that well-connected components of modular robots can be transformed efficiently. Hence we iteratively increase the connectivity within a configuration, to finally arrive at a single solid xy-monotone component. We implemented Gather&Compact and compared it experimentally to the in-place modification by Moreno and Sacristán [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our experiments show that Gather&Compact consistently outperforms MSDP by a significant margin, on all types of square configurations.

Cite as

Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.SWAT.2022.4,
  author =	{A. Akitaya, Hugo and Demaine, Erik D. and Korman, Matias and Kostitsyna, Irina and Parada, Irene and Sonke, Willem and Speckmann, Bettina and Uehara, Ryuhei and Wulms, Jules},
  title =	{{Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.4},
  URN =		{urn:nbn:de:0030-drops-161644},
  doi =		{10.4230/LIPIcs.SWAT.2022.4},
  annote =	{Keywords: Sliding cubes, Reconfiguration, Modular robots, NP-hardness}
}
Document
Characterizing Universal Reconfigurability of Modular Pivoting Robots

Authors: Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are "pivots", where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using O(n³) monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN'18] that we consider of independent interest.

Cite as

Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hesterberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sacristán. Characterizing Universal Reconfigurability of Modular Pivoting Robots. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.SoCG.2021.10,
  author =	{A. Akitaya, Hugo and Demaine, Erik D. and Gonczi, Andrei and Hendrickson, Dylan H. and Hesterberg, Adam and Korman, Matias and Korten, Oliver and Lynch, Jayson and Parada, Irene and Sacrist\'{a}n, Vera},
  title =	{{Characterizing Universal Reconfigurability of Modular Pivoting Robots}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.10},
  URN =		{urn:nbn:de:0030-drops-138094},
  doi =		{10.4230/LIPIcs.SoCG.2021.10},
  annote =	{Keywords: reconfiguration, geometric algorithm, PSPACE-hardness, pivoting hexagons, pivoting squares, modular robots}
}
Document
Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays

Authors: Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive method to connect any two points in ℤ^d. The construction must be consistent (that is, satisfy the natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work has shown asymptotically tight results in two dimensions with Θ(log N) error, where resemblance between segments is measured with the Hausdorff distance, and N is the L₁ distance between the two points. This construction was considered tight because of a Ω(log N) lower bound that applies to any consistent construction in ℤ². In this paper we observe that the lower bound does not directly extend to higher dimensions. We give an alternative argument showing that any consistent construction in d dimensions must have Ω(log^{1/(d-1)} N) error. We tie the error of a consistent construction in high dimensions to the error of similar weak constructions in two dimensions (constructions for which some points need not satisfy all the axioms). This not only opens the possibility for having constructions with o(log N) error in high dimensions, but also opens up an interesting line of research in the tradeoff between the number of axiom violations and the error of the construction. In order to show our lower bound, we also consider a colored variation of the concept of discrepancy of a set of points that we find of independent interest.

Cite as

Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 34:1-34:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chiu_et_al:LIPIcs.ESA.2020.34,
  author =	{Chiu, Man-Kwun and Korman, Matias and Suderland, Martin and Tokuyama, Takeshi},
  title =	{{Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{34:1--34:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.34},
  URN =		{urn:nbn:de:0030-drops-129002},
  doi =		{10.4230/LIPIcs.ESA.2020.34},
  annote =	{Keywords: Consistent Digital Line Segments, Digital Geometry, Discrepancy}
}
Document
Track A: Algorithms, Complexity and Games
Kinetic Geodesic Voronoi Diagrams in a Simple Polygon

Authors: Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study the geodesic Voronoi diagram of a set S of n linearly moving sites inside a static simple polygon P with m vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then develop a kinetic data structure (KDS) that maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change. For both these structures we prove that the number of such changes is at most O(m³), and that this is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient kinetic data structures for both structures. Our data structures use linear space and process a worst-case optimal number of events. Our bisector KDS handles each event in O(log m) time, and our Voronoi center handles each event in O(log² m) time. Both structures can be extended to efficiently support updating the movement of the sites as well. Using these data structures as building blocks we obtain a compact KDS for maintaining the full geodesic Voronoi diagram.

Cite as

Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals. Kinetic Geodesic Voronoi Diagrams in a Simple Polygon. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 75:1-75:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{korman_et_al:LIPIcs.ICALP.2020.75,
  author =	{Korman, Matias and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Staals, Frank},
  title =	{{Kinetic Geodesic Voronoi Diagrams in a Simple Polygon}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{75:1--75:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.75},
  URN =		{urn:nbn:de:0030-drops-124820},
  doi =		{10.4230/LIPIcs.ICALP.2020.75},
  annote =	{Keywords: kinetic data structure, simple polygon, geodesic voronoi diagram}
}
Document
Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers

Authors: Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra "helper" modules ("musketeers") suffice to reconfigure the remaining n modules between any two given configurations. Our algorithm uses O(n^2) pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive "sliding" moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models.

Cite as

Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán. Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.ESA.2019.3,
  author =	{Akitaya, Hugo A. and Arkin, Esther M. and Damian, Mirela and Demaine, Erik D. and Dujmovi\'{c}, Vida and Flatland, Robin and Korman, Matias and Palop, Belen and Parada, Irene and van Renssen, Andr\'{e} and Sacrist\'{a}n, Vera},
  title =	{{Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.3},
  URN =		{urn:nbn:de:0030-drops-111247},
  doi =		{10.4230/LIPIcs.ESA.2019.3},
  annote =	{Keywords: Reconfiguration, geometric algorithm, pivoting squares, modular robots}
}
Document
Circumscribing Polygons and Polygonizations for Disjoint Line Segments

Authors: Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, Diane L. Souvaine, and Csaba D. Tóth

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Given a planar straight-line graph G=(V,E) in R^2, a circumscribing polygon of G is a simple polygon P whose vertex set is V, and every edge in E is either an edge or an internal diagonal of P. A circumscribing polygon is a polygonization for G if every edge in E is an edge of P. We prove that every arrangement of n disjoint line segments in the plane has a subset of size Omega(sqrt{n}) that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to R^3. We show that it is NP-complete to decide whether a given graph G admits a circumscribing polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization.

Cite as

Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, Diane L. Souvaine, and Csaba D. Tóth. Circumscribing Polygons and Polygonizations for Disjoint Line Segments. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.SoCG.2019.9,
  author =	{Akitaya, Hugo A. and Korman, Matias and Rudoy, Mikhail and Souvaine, Diane L. and T\'{o}th, Csaba D.},
  title =	{{Circumscribing Polygons and Polygonizations for Disjoint Line Segments}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.9},
  URN =		{urn:nbn:de:0030-drops-104136},
  doi =		{10.4230/LIPIcs.SoCG.2019.9},
  annote =	{Keywords: circumscribing polygon, Hamiltonicity, extremal combinatorics}
}
Document
Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

Authors: Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, and Marcel Roeloffzen

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(n^omega, n^2 + nh log h + chi^2)) time, where omega<2.373 denotes the matrix multiplication exponent and chi in Omega(n) cap O(n^2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n^2 log n) time.

Cite as

Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, and Marcel Roeloffzen. Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 58:1-58:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{arseneva_et_al:LIPIcs.ISAAC.2018.58,
  author =	{Arseneva, Elena and Chiu, Man-Kwun and Korman, Matias and Markovic, Aleksandar and Okamoto, Yoshio and Ooms, Aur\'{e}lien and van Renssen, Andr\'{e} and Roeloffzen, Marcel},
  title =	{{Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{58:1--58:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.58},
  URN =		{urn:nbn:de:0030-drops-100060},
  doi =		{10.4230/LIPIcs.ISAAC.2018.58},
  annote =	{Keywords: Rectilinear link distance, polygonal domain, diameter, radius}
}
Document
Experimental Study of Compressed Stack Algorithms in Limited Memory Environments

Authors: Jean-François Baffier, Yago Diez, and Matias Korman

Published in: LIPIcs, Volume 103, 17th International Symposium on Experimental Algorithms (SEA 2018)


Abstract
The compressed stack is a data structure designed by Barba et al. (Algorithmica 2015) that allows to reduce the amount of memory needed by a certain class of algorithms at the cost of increasing its runtime. In this paper we introduce the first implementation of this data structure and make its source code publicly available. Together with the implementation we analyse the performance of the compressed stack. In our synthetic experiments, considering different test scenarios and using data sizes ranging up to 2^{30} elements, we compare it with the classic (uncompressed) stack, both in terms of runtime and memory used. Our experiments show that the compressed stack needs significantly less memory than the usual stack (this difference is significant for inputs containing 2000 or more elements). Overall, with a proper choice of parameters, we can save a significant amount of space (from two to four orders of magnitude) with a small increase in the runtime (2.32 times slower on average than the classic stack). These results hold even in test scenarios specifically designed to be challenging for the compressed stack.

Cite as

Jean-François Baffier, Yago Diez, and Matias Korman. Experimental Study of Compressed Stack Algorithms in Limited Memory Environments. In 17th International Symposium on Experimental Algorithms (SEA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 103, pp. 19:1-19:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{baffier_et_al:LIPIcs.SEA.2018.19,
  author =	{Baffier, Jean-Fran\c{c}ois and Diez, Yago and Korman, Matias},
  title =	{{Experimental Study of Compressed Stack Algorithms in Limited Memory Environments}},
  booktitle =	{17th International Symposium on Experimental Algorithms (SEA 2018)},
  pages =	{19:1--19:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-070-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{103},
  editor =	{D'Angelo, Gianlorenzo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2018.19},
  URN =		{urn:nbn:de:0030-drops-89549},
  doi =		{10.4230/LIPIcs.SEA.2018.19},
  annote =	{Keywords: Stack algorithms, time-space trade-off, convex hull, implementation}
}
Document
Convex Hulls in Polygonal Domains

Authors: Luis Barba, Michael Hoffmann, Matias Korman, and Alexander Pilz

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
We study generalizations of convex hulls to polygonal domains with holes. Convexity in Euclidean space is based on the notion of shortest paths, which are straight-line segments. In a polygonal domain, shortest paths are polygonal paths called geodesics. One possible generalization of convex hulls is based on the "rubber band" conception of the convex hull boundary as a shortest curve that encloses a given set of sites. However, it is NP-hard to compute such a curve in a general polygonal domain. Hence, we focus on a different, more direct generalization of convexity, where a set X is geodesically convex if it contains all geodesics between every pair of points x,y in X. The corresponding geodesic convex hull presents a few surprises, and turns out to behave quite differently compared to the classic Euclidean setting or to the geodesic hull inside a simple polygon. We describe a class of geometric objects that suffice to represent geodesic convex hulls of sets of sites, and characterize which such domains are geodesically convex. Using such a representation we present an algorithm to construct the geodesic convex hull of a set of O(n) sites in a polygonal domain with a total of n vertices and h holes in O(n^3h^{3+epsilon}) time, for any constant epsilon > 0.

Cite as

Luis Barba, Michael Hoffmann, Matias Korman, and Alexander Pilz. Convex Hulls in Polygonal Domains. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{barba_et_al:LIPIcs.SWAT.2018.8,
  author =	{Barba, Luis and Hoffmann, Michael and Korman, Matias and Pilz, Alexander},
  title =	{{Convex Hulls in Polygonal Domains}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.8},
  URN =		{urn:nbn:de:0030-drops-88343},
  doi =		{10.4230/LIPIcs.SWAT.2018.8},
  annote =	{Keywords: geometric graph, polygonal domain, geodesic hull, shortest path}
}
Document
Faster Algorithms for Growing Prioritized Disks and Rectangles

Authors: Hee-Kap Ahn, Sang Won Bae, Jongmin Choi, Matias Korman, Wolfgang Mulzer, Eunjin Oh, Ji-won Park, André van Renssen, and Antoine Vigneron

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
Motivated by map labeling, we study the problem in which we are given a collection of n disks in the plane that grow at possibly different speeds. Whenever two disks meet, the one with the higher index disappears. This problem was introduced by Funke, Krumpe, and Storandt[IWOCA 2016]. We provide the first general subquadratic algorithm for computing the times and the order of disappearance. Our algorithm also works for other shapes (such as rectangles) and in any fixed dimension. Using quadtrees, we provide an alternative algorithm that runs in near linear time, although this second algorithm has a logarithmic dependence on either the ratio of the fastest speed to the slowest speed of disks or the spread of the disk centers (the ratio of the maximum to the minimum distance between them). Our result improves the running times of previous algorithms by Funke, Krumpe, and Storandt [IWOCA 2016], Bahrdt et al. [ALENEX 2017], and Funke and Storandt [EWCG 2017]. Finally, we give an \Omega(n\log n) lower bound on the problem, showing that our quadtree algorithms are almost tight.

Cite as

Hee-Kap Ahn, Sang Won Bae, Jongmin Choi, Matias Korman, Wolfgang Mulzer, Eunjin Oh, Ji-won Park, André van Renssen, and Antoine Vigneron. Faster Algorithms for Growing Prioritized Disks and Rectangles. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ahn_et_al:LIPIcs.ISAAC.2017.3,
  author =	{Ahn, Hee-Kap and Bae, Sang Won and Choi, Jongmin and Korman, Matias and Mulzer, Wolfgang and Oh, Eunjin and Park, Ji-won and van Renssen, Andr\'{e} and Vigneron, Antoine},
  title =	{{Faster Algorithms for Growing Prioritized Disks and Rectangles}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{3:1--3:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.3},
  URN =		{urn:nbn:de:0030-drops-82199},
  doi =		{10.4230/LIPIcs.ISAAC.2017.3},
  annote =	{Keywords: map labeling, growing disks, elimination order}
}
  • Refine by Author
  • 24 Korman, Matias
  • 10 van Renssen, André
  • 9 Roeloffzen, Marcel
  • 5 Chiu, Man-Kwun
  • 5 Demaine, Erik D.
  • Show More...

  • Refine by Classification
  • 11 Theory of computation → Computational geometry
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Graph coloring
  • 1 Theory of computation → Caching and paging algorithms
  • 1 Theory of computation → Complexity classes
  • Show More...

  • Refine by Keyword
  • 3 time-space trade-off
  • 2 Consistent Digital Line Segments
  • 2 Digital Geometry
  • 2 Reconfiguration
  • 2 facility location
  • Show More...

  • Refine by Type
  • 26 document

  • Refine by Publication Year
  • 5 2016
  • 5 2017
  • 4 2024
  • 3 2018
  • 2 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail