2 Search Results for "Kulkarni, Pooja"


Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

Authors: Siddharth Barman and Pooja Kulkarni

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Cake cutting is a classic model for studying fair division of a heterogeneous, divisible resource among agents with individual preferences. Addressing cake division under a typical requirement that each agent must receive a connected piece of the cake, we develop approximation algorithms for finding envy-free (fair) cake divisions. In particular, this work improves the state-of-the-art additive approximation bound for this fundamental problem. Our results hold for general cake division instances in which the agents' valuations satisfy basic assumptions and are normalized (to have value 1 for the cake). Furthermore, the developed algorithms execute in polynomial time under the standard Robertson-Webb query model. Prior work has shown that one can efficiently compute a cake division (with connected pieces) in which the additive envy of any agent is at most 1/3. An efficient algorithm is also known for finding connected cake divisions that are (almost) 1/2-multiplicatively envy-free. Improving the additive approximation guarantee and maintaining the multiplicative one, we develop a polynomial-time algorithm that computes a connected cake division that is both (1/4 +o(1))-additively envy-free and (1/2 - o(1))-multiplicatively envy-free. Our algorithm is based on the ideas of interval growing and envy-cycle elimination. In addition, we study cake division instances in which the number of distinct valuations across the agents is parametrically bounded. We show that such cake division instances admit a fully polynomial-time approximation scheme for connected envy-free cake division.

Cite as

Siddharth Barman and Pooja Kulkarni. Approximation Algorithms for Envy-Free Cake Division with Connected Pieces. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 16:1-16:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{barman_et_al:LIPIcs.ICALP.2023.16,
  author =	{Barman, Siddharth and Kulkarni, Pooja},
  title =	{{Approximation Algorithms for Envy-Free Cake Division with Connected Pieces}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{16:1--16:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.16},
  URN =		{urn:nbn:de:0030-drops-180685},
  doi =		{10.4230/LIPIcs.ICALP.2023.16},
  annote =	{Keywords: Fair Division, Envy-Freeness, Envy-Cycle Elimination}
}
Document
On Fair and Efficient Allocations of Indivisible Public Goods

Authors: Jugal Garg, Pooja Kulkarni, and Aniket Murhekar

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In this model, we have n agents and m available public goods, and we want to select k ≤ m goods in a fair and efficient manner. We first establish fundamental connections between the models of private goods, public goods, and public decision making by presenting polynomial-time reductions for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms are known to provide remarkable fairness and efficiency guarantees in private goods and public decision making settings. We show that they retain these desirable properties even in the public goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to one good (Prop1), 1/n approximation to Round Robin Share (RRS), and the efficiency guarantee of Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in sharp contrast to the private goods setting that admits polynomial-time algorithms under binary valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW which also satisfies RRS, Prop1, and 1/2-Prop.

Cite as

Jugal Garg, Pooja Kulkarni, and Aniket Murhekar. On Fair and Efficient Allocations of Indivisible Public Goods. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 22:1-22:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.FSTTCS.2021.22,
  author =	{Garg, Jugal and Kulkarni, Pooja and Murhekar, Aniket},
  title =	{{On Fair and Efficient Allocations of Indivisible Public Goods}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.22},
  URN =		{urn:nbn:de:0030-drops-155331},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.22},
  annote =	{Keywords: Public goods, Nash welfare, Leximin, Proportionality}
}
  • Refine by Author
  • 2 Kulkarni, Pooja
  • 1 Barman, Siddharth
  • 1 Garg, Jugal
  • 1 Murhekar, Aniket

  • Refine by Classification
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Algorithmic game theory and mechanism design
  • 1 Theory of computation → Mathematical optimization

  • Refine by Keyword
  • 1 Envy-Cycle Elimination
  • 1 Envy-Freeness
  • 1 Fair Division
  • 1 Leximin
  • 1 Nash welfare
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail