3 Search Results for "Li, Fei"


Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:30},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
Mobility Data Science (Dagstuhl Seminar 22021)

Authors: Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi

Published in: Dagstuhl Reports, Volume 12, Issue 1 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22021 "Mobility Data Science". This seminar was held January 9-14, 2022, including 47 participants from industry and academia. The goal of this Dagstuhl Seminar was to create a new research community of mobility data science in which the whole is greater than the sum of its parts by bringing together established leaders as well as promising young researchers from all fields related to mobility data science. Specifically, this report summarizes the main results of the seminar by (1) defining Mobility Data Science as a research domain, (2) by sketching its agenda in the coming years, and by (3) building a mobility data science community. (1) Mobility data science is defined as spatiotemporal data that additionally captures the behavior of moving entities (human, vehicle, animal, etc.). To understand, explain, and predict behavior, we note that a strong collaboration with research in behavioral and social sciences is needed. (2) Future research directions for mobility data science described in this report include a) mobility data acquisition and privacy, b) mobility data management and analysis, and c) applications of mobility data science. (3) We identify opportunities towards building a mobility data science community, towards collaborations between academic and industry, and towards a mobility data science curriculum.

Cite as

Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi. Mobility Data Science (Dagstuhl Seminar 22021). In Dagstuhl Reports, Volume 12, Issue 1, pp. 1-34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{mokbel_et_al:DagRep.12.1.1,
  author =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas and Almeida, Jussara and Anderson, Taylor and Aref, Walid and Andrienko, Gennady and Andrienko, Natalia and Cao, Yang and Chawla, Sanjay and Cheng, Reynold and Chrysanthis, Panos and Fei, Xiqi and Ghinita, Gabriel and Graser, Anita and Gunopulos, Dimitrios and Jensen, Christian and Kim, Joon-Sook and Kim, Kyoung-Sook and Kr\"{o}ger, Peer and Krumm, John and Lauer, Johannes and Magdy, Amr and Nascimento, Mario and Ravada, Siva and Renz, Matthias and Sacharidis, Dimitris and Shahabi, Cyrus and Salim, Flora and Sarwat, Mohamed and Schoemans, Maxime and Speckmann, Bettina and Tanin, Egemen and Theodoridis, Yannis and Torp, Kristian and Trajcevski, Goce and van Kreveld, Marc and Wenk, Carola and Werner, Martin and Wong, Raymond and Wu, Song and Xu, Jianqiu and Youssef, Moustafa and Zeinalipour, Demetris and Zhang, Mengxuan and Zim\'{a}nyi, Esteban},
  title =	{{Mobility Data Science (Dagstuhl Seminar 22021)}},
  pages =	{1--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{1},
  editor =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.1.1},
  URN =		{urn:nbn:de:0030-drops-169190},
  doi =		{10.4230/DagRep.12.1.1},
  annote =	{Keywords: Spatio-temporal, Tracking, Privacy, Behavior, Data cleaning, Data management, Analytics}
}
Document
Online Packet Scheduling with Bounded Delay and Lookahead

Authors: Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jirí Sgall, and Pavel Veselý

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of unit size arrive at a router over time and need to be transmitted over a network link. Each packet has two attributes: a non-negative weight and a deadline for its transmission. The objective is to maximize the total weight of the transmitted packets. This problem has been well studied in the literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [Englert and Westermann, SODA 2007], still quite far from the best lower bound of phi approx 1.618 [Hajek, CISS 2001; Andelman et al, SODA 2003; Chin and Fung, Algorithmica, 2003]. In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in at most s consecutive slots, starting at its release time. The lower bound of phi applies even to the special case of 2-bounded instances, and a phi-competitive algorithm for 3-bounded instances was given in [Chin et al, JDA, 2006]. Improving that result, and addressing a question posed by Goldwasser [SIGACT News, 2010], we present a phi-competitive algorithm for 4-bounded instances. We also study a variant of PacketScheduling where an online algorithm has the additional power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketScheduling with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with competitive ratio frac{1}{2}(sqrt{13} - 1) approx 1.303 and we prove a nearly tight lower bound of frac{1}{4}(1 + sqrt{17}) approx 1.281.

Cite as

Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jirí Sgall, and Pavel Veselý. Online Packet Scheduling with Bounded Delay and Lookahead. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 21:1-21:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bohm_et_al:LIPIcs.ISAAC.2016.21,
  author =	{B\"{o}hm, Martin and Chrobak, Marek and Jez, Lukasz and Li, Fei and Sgall, Jir{\'\i} and Vesel\'{y}, Pavel},
  title =	{{Online Packet Scheduling with Bounded Delay and Lookahead}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{21:1--21:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.21},
  URN =		{urn:nbn:de:0030-drops-67901},
  doi =		{10.4230/LIPIcs.ISAAC.2016.21},
  annote =	{Keywords: buffer management, online scheduling, online algorithm, lookahead}
}
  • Refine by Author
  • 1 Almeida, Jussara
  • 1 Anderson, Taylor
  • 1 Andrienko, Gennady
  • 1 Andrienko, Natalia
  • 1 Aref, Walid
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Information systems → Data management systems
  • 1 Information systems → Information systems applications

  • Refine by Keyword
  • 1 Analytics
  • 1 Behavior
  • 1 Convolutional Neural Networks
  • 1 Data cleaning
  • 1 Data management
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2022
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail