18 Search Results for "Li, Wei"


Document
Greedy Heuristics for Judicious Hypergraph Partitioning

Authors: Noah Wahl and Lars Gottesbüren

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem. In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is to minimize the maximum load over all blocks of the partition. We devise strategies for initial partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the previous state-of-the-art solver - based on greedy set covers - in both running time (two to four orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy approaches difficult to use for this problem is the high frequency of zero-gain moves, for which we present and evaluate counteracting mechanisms.

Cite as

Noah Wahl and Lars Gottesbüren. Greedy Heuristics for Judicious Hypergraph Partitioning. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 17:1-17:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wahl_et_al:LIPIcs.SEA.2023.17,
  author =	{Wahl, Noah and Gottesb\"{u}ren, Lars},
  title =	{{Greedy Heuristics for Judicious Hypergraph Partitioning}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.17},
  URN =		{urn:nbn:de:0030-drops-183674},
  doi =		{10.4230/LIPIcs.SEA.2023.17},
  annote =	{Keywords: hypergraph partitioning, local search algorithms, load balancing, local search}
}
Document
Efficient Yao Graph Construction

Authors: Daniel Funke and Peter Sanders

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless networks. An optimal 𝒪(n log n)-time algorithm to construct Yao graphs for a given point set has been proposed in the literature but - to the best of our knowledge - never been implemented. Instead, algorithms with a quadratic complexity are used in popular packages to construct these graphs. In this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the data structures required to achieve the 𝒪(n log n) time bound and detail algorithmic adaptations necessary to take the original algorithm from theory to practice. We propose a priority queue data structure that separates static and dynamic events and might be of independent interest for other sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid data structure that performs well for medium-sized inputs. We evaluate our implementations on a wide variety of synthetic and real-world datasets and show that our implementation outperforms current publicly available implementations by at least an order of magnitude.

Cite as

Daniel Funke and Peter Sanders. Efficient Yao Graph Construction. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 20:1-20:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{funke_et_al:LIPIcs.SEA.2023.20,
  author =	{Funke, Daniel and Sanders, Peter},
  title =	{{Efficient Yao Graph Construction}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.20},
  URN =		{urn:nbn:de:0030-drops-183706},
  doi =		{10.4230/LIPIcs.SEA.2023.20},
  annote =	{Keywords: computational geometry, geometric spanners, Yao graphs, sweepline algorithms, optimal algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

Authors: Kuan Cheng, Zhengzhong Jin, Xin Li, Zhide Wei, and Yu Zheng

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
This work continues the study of linear error correcting codes against adversarial insertion deletion errors (insdel errors). Previously, the work of Cheng, Guruswami, Haeupler, and Li [Kuan Cheng et al., 2021] showed the existence of asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant size alphabet, or achieve rate arbitrarily close to 1/2 even over the binary alphabet. As shown in [Kuan Cheng et al., 2021], these bounds are also the best possible. However, known explicit constructions in [Kuan Cheng et al., 2021], and subsequent improved constructions by Con, Shpilka, and Tamo [Con et al., 2022] all fall short of meeting these bounds. Over any constant size alphabet, they can only achieve rate < 1/8 or correct < 1/4 fraction of errors; over the binary alphabet, they can only achieve rate < 1/1216 or correct < 1/54 fraction of errors. Apparently, previous techniques face inherent barriers to achieve rate better than 1/4 or correct more than 1/2 fraction of errors. In this work we give new constructions of such codes that meet these bounds, namely, asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant size alphabet, and binary asymptotically good linear insdel codes that can achieve rate arbitrarily close to 1/2. All our constructions are efficiently encodable and decodable. Our constructions are based on a novel approach of code concatenation, which embeds the index information implicitly into codewords. This significantly differs from previous techniques and may be of independent interest. Finally, we also prove the existence of linear concatenated insdel codes with parameters that match random linear codes, and propose a conjecture about linear insdel codes.

Cite as

Kuan Cheng, Zhengzhong Jin, Xin Li, Zhide Wei, and Yu Zheng. Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 41:1-41:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.ICALP.2023.41,
  author =	{Cheng, Kuan and Jin, Zhengzhong and Li, Xin and Wei, Zhide and Zheng, Yu},
  title =	{{Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{41:1--41:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.41},
  URN =		{urn:nbn:de:0030-drops-180931},
  doi =		{10.4230/LIPIcs.ICALP.2023.41},
  annote =	{Keywords: Error correcting code, Edit distance, Pseudorandomness, Derandomization}
}
Document
Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness

Authors: Martin Knoche, Stefan Hörmann, and Gerhard Rigoll

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Many face recognition approaches expect the input images to have similar image resolution. However, in real-world applications, the image resolution varies due to different image capture mechanisms or sources, affecting the performance of face recognition systems. This work first analyzes the image resolution susceptibility of modern face recognition. Face verification on the very popular LFW dataset drops from 99.23% accuracy to almost 55% when image dimensions of both images are reduced to arguable very poor resolution. With cross-resolution image pairs (one HR and one LR image), face verification accuracy is even worse. This characteristic is investigated more in-depth by analyzing the feature distances utilized for face verification. To increase the robustness, we propose two training strategies applied to a state-of-the-art face recognition model: 1) Training with 50% low resolution images within each batch and 2) using the cosine distance loss between high and low resolution features in a siamese network structure. Both methods significantly boost face verification accuracy for matching training and testing image resolutions. Training a network with different resolutions simultaneously instead of adding only one specific low resolution showed improvements across all resolutions and made a single model applicable to unknown resolutions. However, models trained for one particular low resolution perform better when using the exact resolution for testing. We improve the face verification accuracy from 96.86% to 97.72% on the popular LFW database with uniformly distributed image dimensions between 112 × 112 px and 5 × 5 px. Our approaches improve face verification accuracy even more from 77.56% to 87.17% for distributions focusing on lower images resolutions. Lastly, we propose specific image dimension sets focusing on high, mid, and low resolution for five well-known datasets to benchmark face verification accuracy in cross-resolution scenarios.

Cite as

Martin Knoche, Stefan Hörmann, and Gerhard Rigoll. Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 01:1-01:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{knoche_et_al:LITES.8.1.1,
  author =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  title =	{{Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{01:1--01:20},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.1},
  doi =		{10.4230/LITES.8.1.1},
  annote =	{Keywords: recognition, resolution, cross, face, identification}
}
Document
Micro- and Macroscopic Road Traffic Analysis using Drone Image Data

Authors: Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
The current development in the drone technology, alongside with machine learning based image processing, open new possibilities for various applications. Thus, the market volume is expected to grow rapidly over the next years. The goal of this paper is to demonstrate the capabilities and limitations of drone based image data processing for the purpose of road traffic analysis. In the first part a method for generating microscopic traffic data is proposed. More precisely, the state of vehicles and the resulting trajectories are estimated. The method is validated by conducting experiments with reference sensors and proofs to achieve precise vehicle state estimation results. It is also shown, how the computational effort can be reduced by incorporating the tracking information into a neural network. A discussion on current limitations supplements the findings. By collecting a large number of vehicle trajectories, macroscopic statistics, such as traffic flow and density can be obtained from the data. In the second part, a publicly available drone based data set is analyzed to evaluate the suitability for macroscopic traffic modeling. The results show that the method is well suited for gaining detailed information about macroscopic statistics, such as traffic flow dependent time headway or lane change occurrences. In conclusion, this paper presents methods to exploit the remarkable opportunities of drone based image processing for joint macro- and microscopic traffic analysis.

Cite as

Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch. Micro- and Macroscopic Road Traffic Analysis using Drone Image Data. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 02:1-02:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kruber_et_al:LITES.8.1.2,
  author =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  title =	{{Micro- and Macroscopic Road Traffic Analysis using Drone Image Data}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{02:1--02:27},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.2},
  doi =		{10.4230/LITES.8.1.2},
  annote =	{Keywords: traffic data analysis, trajectory data, drone image data}
}
Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{03:1--03:30},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
Extended Abstract
Detecting and Quantifying Crypto Wash Trading (Extended Abstract)

Authors: Lin William Cong, Xi Li, Ke Tang, and Yang Yang

Published in: OASIcs, Volume 97, 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)


Abstract
We introduce systematic tests exploiting robust statistical and behavioral patterns in trading to detect fake transactions on 29 cryptocurrency exchanges. Regulated exchanges feature patterns consistently observed in financial markets and nature; abnormal first-significant-digit distributions, size rounding, and transaction tail distributions on unregulated exchanges reveal rampant manipulations unlikely driven by strategy or exchange heterogeneity. We quantify the wash trading on each unregulated exchange, which averaged over 70% of the reported volume. We further document how these fabricated volumes (trillions of dollars annually) improve exchange ranking, temporarily distort prices, and relate to exchange characteristics (e.g., age and userbase), market conditions, and regulation.

Cite as

Lin William Cong, Xi Li, Ke Tang, and Yang Yang. Detecting and Quantifying Crypto Wash Trading (Extended Abstract). In 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021). Open Access Series in Informatics (OASIcs), Volume 97, pp. 10:1-10:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cong_et_al:OASIcs.Tokenomics.2021.10,
  author =	{Cong, Lin William and Li, Xi and Tang, Ke and Yang, Yang},
  title =	{{Detecting and Quantifying Crypto Wash Trading}},
  booktitle =	{3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)},
  pages =	{10:1--10:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-220-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{97},
  editor =	{Gramoli, Vincent and Halaburda, Hanna and Pass, Rafael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tokenomics.2021.10},
  URN =		{urn:nbn:de:0030-drops-159072},
  doi =		{10.4230/OASIcs.Tokenomics.2021.10},
  annote =	{Keywords: Bitcoin, Cryptocurrency, FinTech, Forensic Finance, Fraud Detection, Regulation}
}
Document
Random Subgroups of Rationals

Authors: Ziyuan Gao, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, Alexander Melnikov, Karen Seidel, and Frank Stephan

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
This paper introduces and studies a notion of algorithmic randomness for subgroups of rationals. Given a randomly generated additive subgroup (G,+) of rationals, two main questions are addressed: first, what are the model-theoretic and recursion-theoretic properties of (G,+); second, what learnability properties can one extract from G and its subclass of finitely generated subgroups? For the first question, it is shown that the theory of (G,+) coincides with that of the additive group of integers and is therefore decidable; furthermore, while the word problem for G with respect to any generating sequence for G is not even semi-decidable, one can build a generating sequence beta such that the word problem for G with respect to beta is co-recursively enumerable (assuming that the set of generators of G is limit-recursive). In regard to the second question, it is proven that there is a generating sequence beta for G such that every non-trivial finitely generated subgroup of G is recursively enumerable and the class of all such subgroups of G is behaviourally correctly learnable, that is, every non-trivial finitely generated subgroup can be semantically identified in the limit (again assuming that the set of generators of G is limit-recursive). On the other hand, the class of non-trivial finitely generated subgroups of G cannot be syntactically identified in the limit with respect to any generating sequence for G. The present work thus contributes to a recent line of research studying algorithmically random infinite structures and uncovers an interesting connection between the arithmetical complexity of the set of generators of a randomly generated subgroup of rationals and the learnability of its finitely generated subgroups.

Cite as

Ziyuan Gao, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, Alexander Melnikov, Karen Seidel, and Frank Stephan. Random Subgroups of Rationals. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 25:1-25:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gao_et_al:LIPIcs.MFCS.2019.25,
  author =	{Gao, Ziyuan and Jain, Sanjay and Khoussainov, Bakhadyr and Li, Wei and Melnikov, Alexander and Seidel, Karen and Stephan, Frank},
  title =	{{Random Subgroups of Rationals}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.25},
  URN =		{urn:nbn:de:0030-drops-109693},
  doi =		{10.4230/LIPIcs.MFCS.2019.25},
  annote =	{Keywords: Martin-L\"{o}f randomness, subgroups of rationals, finitely generated subgroups of rationals, learning in the limit, behaviourally correct learning}
}
Document
A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits

Authors: Dmitry Burlyaev, Pascal Fradet, and Alain Girault

Published in: LITES, Volume 5, Issue 1 (2018). Leibniz Transactions on Embedded Systems, Volume 5, Issue 1


Abstract
We present a formal approach to minimize the number of voters in triple-modular redundant (TMR) sequential circuits. Our technique actually works on a single copy of the TMR circuit and considers a large class of fault mo dels of the form “at most 1 Single-Event Upset (SEU) or Single-Event Transient (SET) every k clock cycles”. Verification-based voter minimization guarantees that the resulting TMR circuit (i) is fault tolerant to the soft-errors defined by the fault model and (ii) is functionally equivalent to the initial TMR circuit. Our approach operates at the logic level and takes into account the input and output interface specifications of the circuit. Its implementation makes use of graph traversal algorithms, fixed-point iterations, and binary decision diagrams (BDD). Experimental results on the ITC’99 benchmark suite indicate that our method significantly decreases the number of inserted voters, yielding a hardware reduction of up to 55% and a clock frequency increase of up to 35% compared to full TMR. As our experiments show, if the SEU fault-model is replaced with the stricter fault-model of SET, it has a minor impact on the number of removed voters. On the other hand, BDD-based modelling of SET effects represents a more complex task than the modelling of an SEU as a bit-flip. We propose solutions for this task and explain the nature of encountered problems. We address scalability issues arising from formal verification with approximations and assess their efficiency and precision.

Cite as

Dmitry Burlyaev, Pascal Fradet, and Alain Girault. A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits. In LITES, Volume 5, Issue 1 (2018). Leibniz Transactions on Embedded Systems, Volume 5, Issue 1, pp. 04:1-04:26, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{burlyaev_et_al:LITES-v005-i001-a004,
  author =	{Burlyaev, Dmitry and Fradet, Pascal and Girault, Alain},
  title =	{{A Static Analysis for the Minimization of Voters in Fault-Tolerant Circuits}},
  booktitle =	{LITES, Volume 5, Issue 1 (2018)},
  pages =	{04:1--04:26},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2018},
  volume =	{5},
  number =	{1},
  editor =	{Burlyaev, Dmitry and Fradet, Pascal and Girault, Alain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v005-i001-a004},
  doi =		{10.4230/LITES-v005-i001-a004},
  annote =	{Keywords: Digital Circuits, Fault-tolerance, Optimization, Static Analysis, Triple Modular Redundancy}
}
Document
Odd Yao-Yao Graphs are Not Spanners

Authors: Yifei Jin, Jian Li, and Wei Zhan

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
It is a long standing open problem whether Yao-Yao graphs YY_{k} are all spanners [Li et al. 2002]. Bauer and Damian [Bauer and Damian, 2012] showed that all YY_{6k} for k >= 6 are spanners. Li and Zhan [Li and Zhan, 2016] generalized their result and proved that all even Yao-Yao graphs YY_{2k} are spanners (for k >= 42). However, their technique cannot be extended to odd Yao-Yao graphs, and whether they are spanners are still elusive. In this paper, we show that, surprisingly, for any integer k >= 1, there exist odd Yao-Yao graph YY_{2k+1} instances, which are not spanners.

Cite as

Yifei Jin, Jian Li, and Wei Zhan. Odd Yao-Yao Graphs are Not Spanners. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 49:1-49:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.SoCG.2018.49,
  author =	{Jin, Yifei and Li, Jian and Zhan, Wei},
  title =	{{Odd Yao-Yao Graphs are Not Spanners}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.49},
  URN =		{urn:nbn:de:0030-drops-87621},
  doi =		{10.4230/LIPIcs.SoCG.2018.49},
  annote =	{Keywords: Odd Yao-Yao Graph, Spanner, Counterexample}
}
Document
The W-SEPT Project: Towards Semantic-Aware WCET Estimation

Authors: Claire Maiza, Pascal Raymond, Catherine Parent-Vigouroux, Armelle Bonenfant, Fabienne Carrier, Hugues Cassé, Philippe Cuenot, Denis Claraz, Nicolas Halbwachs, Erwan Jahier, Hanbing Li, Marianne de Michiel, Vincent Mussot, Isabelle Puaut, Christine Rochange, Erven Rohou, Jordy Ruiz, Pascal Sotin, and Wei-Tsun Sun

Published in: OASIcs, Volume 57, 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017)


Abstract
Critical embedded systems are generally composed of repetitive tasks that must meet hard timing constraints, such as termination deadlines. Providing an upper bound of the worst-case execution time (WCET) of such tasks at design time is necessary to guarantee the correctness of the system. In static WCET analysis, a main source of over-approximation comes from the complexity of the modern hardware platforms: their timing behavior tends to become more unpredictable because of features like caches, pipeline, branch prediction, etc. Another source of over-approximation comes from the software itself: WCET analysis may consider potential worst-cases executions that are actually infeasible, because of the semantics of the program or because they correspond to unrealistic inputs. The W-SEPT project, for "WCET, Semantics, Precision and Traceability", has been carried out to study and exploit the influence of program semantics on the WCET estimation. This paper presents the results of this project : a semantic-aware WCET estimation workflow for high-level designed systems.

Cite as

Claire Maiza, Pascal Raymond, Catherine Parent-Vigouroux, Armelle Bonenfant, Fabienne Carrier, Hugues Cassé, Philippe Cuenot, Denis Claraz, Nicolas Halbwachs, Erwan Jahier, Hanbing Li, Marianne de Michiel, Vincent Mussot, Isabelle Puaut, Christine Rochange, Erven Rohou, Jordy Ruiz, Pascal Sotin, and Wei-Tsun Sun. The W-SEPT Project: Towards Semantic-Aware WCET Estimation. In 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017). Open Access Series in Informatics (OASIcs), Volume 57, pp. 9:1-9:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{maiza_et_al:OASIcs.WCET.2017.9,
  author =	{Maiza, Claire and Raymond, Pascal and Parent-Vigouroux, Catherine and Bonenfant, Armelle and Carrier, Fabienne and Cass\'{e}, Hugues and Cuenot, Philippe and Claraz, Denis and Halbwachs, Nicolas and Jahier, Erwan and Li, Hanbing and de Michiel, Marianne and Mussot, Vincent and Puaut, Isabelle and Rochange, Christine and Rohou, Erven and Ruiz, Jordy and Sotin, Pascal and Sun, Wei-Tsun},
  title =	{{The W-SEPT Project: Towards Semantic-Aware WCET Estimation}},
  booktitle =	{17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017)},
  pages =	{9:1--9:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-057-6},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{57},
  editor =	{Reineke, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2017.9},
  URN =		{urn:nbn:de:0030-drops-73097},
  doi =		{10.4230/OASIcs.WCET.2017.9},
  annote =	{Keywords: Worst-case execution time analysis, Static analysis, Program analysis}
}
Document
k-Regret Minimizing Set: Efficient Algorithms and Hardness

Authors: Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing Wong, and Wei Zhan

Published in: LIPIcs, Volume 68, 20th International Conference on Database Theory (ICDT 2017)


Abstract
We study the k-regret minimizing query (k-RMS), which is a useful operator for supporting multi-criteria decision-making. Given two integers k and r, a k-RMS returns r tuples from the database which minimize the k-regret ratio, defined as one minus the worst ratio between the k-th maximum utility score among all tuples in the database and the maximum utility score of the r tuples returned. A solution set contains only r tuples, enjoying the benefits of both top-k queries and skyline queries. Proposed in 2012, the query has been studied extensively in recent years. In this paper, we advance the theory and the practice of k-RMS in the following aspects. First, we develop efficient algorithms for k-RMS (and its decision version) when the dimensionality is 2. The running time of our algorithms outperforms those of previous ones. Second, we show that k-RMS is NP-hard even when the dimensionality is 3. This provides a complete characterization of the complexity of k-RMS, and answers an open question in previous studies. In addition, we present approximation algorithms for the problem when the dimensionality is 3 or larger.

Cite as

Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing Wong, and Wei Zhan. k-Regret Minimizing Set: Efficient Algorithms and Hardness. In 20th International Conference on Database Theory (ICDT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 68, pp. 11:1-11:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ICDT.2017.11,
  author =	{Cao, Wei and Li, Jian and Wang, Haitao and Wang, Kangning and Wang, Ruosong and Chi-Wing Wong, Raymond and Zhan, Wei},
  title =	{{k-Regret Minimizing Set: Efficient Algorithms and Hardness}},
  booktitle =	{20th International Conference on Database Theory (ICDT 2017)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-024-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{68},
  editor =	{Benedikt, Michael and Orsi, Giorgio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2017.11},
  URN =		{urn:nbn:de:0030-drops-70569},
  doi =		{10.4230/LIPIcs.ICDT.2017.11},
  annote =	{Keywords: multi-criteria decision-making, regret minimizing set, top-k query}
}
Document
Almost All Even Yao-Yao Graphs Are Spanners

Authors: Jian Li and Wei Zhan

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
It is an open problem whether Yao-Yao graphs YY_{k} (also known as sparse-Yao graphs) are all spanners when the integer parameter k is large enough. In this paper we show that, for any integer k >= 42, the Yao-Yao graph YY_{2k} is a t_k-spanner, with stretch factor t_k = 6.03+O(k^{-1}) when k tends to infinity. Our result generalizes the best known result which asserts that all YY_{6k} are spanners for k >= 6 [Bauer and Damian, SODA'13]. Our proof is also somewhat simpler.

Cite as

Jian Li and Wei Zhan. Almost All Even Yao-Yao Graphs Are Spanners. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 62:1-62:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ESA.2016.62,
  author =	{Li, Jian and Zhan, Wei},
  title =	{{Almost All Even Yao-Yao Graphs Are Spanners}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{62:1--62:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.62},
  URN =		{urn:nbn:de:0030-drops-64033},
  doi =		{10.4230/LIPIcs.ESA.2016.62},
  annote =	{Keywords: Yao-Yao graph, geometric spanner, curved trapezoid}
}
Document
A Survey on Static Cache Analysis for Real-Time Systems

Authors: Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
Real-time systems are reactive computer systems that must produce their reaction to a stimulus within given time bounds. A vital verification requirement is to estimate the Worst-Case Execution Time (WCET) of programs. These estimates are then used to predict the timing behavior of the overall system. The execution time of a program heavily depends on the underlying hardware, among which cache has the biggest influence. Analyzing cache behavior is very challenging due to the versatile cache features and complex execution environment. This article provides a survey on static cache analysis for real-time systems. We first present the challenges and static analysis techniques for independent programs with respect to different cache features. Then, the discussion is extended to cache analysis in complex execution environment, followed by a survey of existing tools based on static techniques for cache analysis. An outlook for future research is provided at last.

Cite as

Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A Survey on Static Cache Analysis for Real-Time Systems. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 05:1-05:48, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{lv_et_al:LITES-v003-i001-a005,
  author =	{Lv, Mingsong and Guan, Nan and Reineke, Jan and Wilhelm, Reinhard and Yi, Wang},
  title =	{{A Survey on Static Cache Analysis for Real-Time Systems}},
  booktitle =	{LITES, Volume 3, Issue 1 (2016)},
  pages =	{05:1--05:48},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  editor =	{Lv, Mingsong and Guan, Nan and Reineke, Jan and Wilhelm, Reinhard and Yi, Wang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a005},
  doi =		{10.4230/LITES-v003-i001-a005},
  annote =	{Keywords: Hard real-time, Cache analysis, Worst-case execution time}
}
Document
New Characterizations in Turnstile Streams with Applications

Authors: Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Recently, [Li, Nguyen, Woodruff, STOC 2014] showed any 1-pass constant probability streaming algorithm for computing a relation f on a vector x in {-m, -(m-1), ..., m}^n presented in the turnstile data stream model can be implemented by maintaining a linear sketch Ax mod q, where A is an r times n integer matrix and q = (q_1, ..., q_r) is a vector of positive integers. The space complexity of maintaining Ax mod q, not including the random bits used for sampling A and q, matches the space of the optimal algorithm. We give multiple strengthenings of this reduction, together with new applications. In particular, we show how to remove the following shortcomings of their reduction: 1. The Box Constraint. Their reduction applies only to algorithms that must be correct even if x_{infinity} = max_{i in [n]} |x_i| is allowed to be much larger than m at intermediate points in the stream, provided that x is in {-m, -(m-1), ..., m}^n at the end of the stream. We give a condition under which the optimal algorithm is a linear sketch even if it works only when promised that x is in {-m, -(m-1), ..., m}^n at all points in the stream. Using this, we show the first super-constant Omega(log m) bits lower bound for the problem of maintaining a counter up to an additive epsilon*m error in a turnstile stream, where epsilon is any constant in (0, 1/2). Previous lower bounds are based on communication complexity and are only for relative error approximation; interestingly, we do not know how to prove our result using communication complexity. More generally, we show the first super-constant Omega(log(m)) lower bound for additive approximation of l_p-norms; this bound is tight for p in [1, 2]. 2. Negative Coordinates. Their reduction allows x_i to be negative while processing the stream. We show an equivalence between 1-pass algorithms and linear sketches Ax mod q in dynamic graph streams, or more generally, the strict turnstile model, in which for all i in [n], x_i is nonnegative at all points in the stream. Combined with [Assadi, Khanna, Li, Yaroslavtsev, SODA 2016], this resolves the 1-pass space complexity of approximating the maximum matching in a dynamic graph stream, answering a question in that work. 3. 1-Pass Restriction. Their reduction only applies to 1-pass data stream algorithms in the turnstile model, while there exist algorithms for heavy hitters and for low rank approximation which provably do better with multiple passes. We extend the reduction to algorithms which make any number of passes, showing the optimal algorithm is to choose a new linear sketch at the beginning of each pass, based on the output of previous passes.

Cite as

Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New Characterizations in Turnstile Streams with Applications. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 20:1-20:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ai_et_al:LIPIcs.CCC.2016.20,
  author =	{Ai, Yuqing and Hu, Wei and Li, Yi and Woodruff, David P.},
  title =	{{New Characterizations in Turnstile Streams with Applications}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{20:1--20:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.20},
  URN =		{urn:nbn:de:0030-drops-58337},
  doi =		{10.4230/LIPIcs.CCC.2016.20},
  annote =	{Keywords: communication complexity, data streams, dynamic graph streams, norm estimation}
}
  • Refine by Author
  • 3 Li, Jian
  • 3 Zhan, Wei
  • 2 Li, Wei
  • 1 Ai, Yuqing
  • 1 Bonenfant, Armelle
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Real-time systems
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Machine learning
  • 1 Computing methodologies → Neural networks
  • 1 General and reference → Surveys and overviews
  • Show More...

  • Refine by Keyword
  • 2 Crowdsourcing
  • 2 Optimization
  • 1 Applications
  • 1 Bitcoin
  • 1 Blocking optimality
  • Show More...

  • Refine by Type
  • 18 document

  • Refine by Publication Year
  • 4 2022
  • 3 2016
  • 3 2023
  • 2 2013
  • 2 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail