16 Search Results for "Li, Xin"


Document
On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors

Authors: Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and Minshen Zhu

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
Locally Decodable Codes (LDCs) are error-correcting codes C:Σⁿ → Σ^m, encoding messages in Σⁿ to codewords in Σ^m, with super-fast decoding algorithms. They are important mathematical objects in many areas of theoretical computer science, yet the best constructions so far have codeword length m that is super-polynomial in n, for codes with constant query complexity and constant alphabet size. In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006) show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost linear codeword length over the binary alphabet, and used them to obtain significantly-improved constructions of Probabilistically Checkable Proofs. In this work, we study RLDCs in the standard Hamming-error setting, and introduce their variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were first studied by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), and are further motivated by recent advances in DNA random access bio-technologies. Our first result is an exponential lower bound on the length of Hamming RLDCs making 2 queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by Gur and Lachish (SICOMP 2021) and is the first exponential lower bound for RLDCs. Combined with the results of Ben-Sasson et al., our result exhibits a "phase-transition"-type behavior on the codeword length for some constant-query complexity. We achieve these lower bounds via a transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of message bits that fix codeword bits. We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version. On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant query complexity, matching the parameters of the Hamming variants. On the other hand, we prove exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these variants are equivalent in the Hamming setting, they are significantly different in the insdel setting. Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.

Cite as

Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and Minshen Zhu. On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 14:1-14:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{block_et_al:LIPIcs.CCC.2023.14,
  author =	{Block, Alexander R. and Blocki, Jeremiah and Cheng, Kuan and Grigorescu, Elena and Li, Xin and Zheng, Yu and Zhu, Minshen},
  title =	{{On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{14:1--14:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.14},
  URN =		{urn:nbn:de:0030-drops-182847},
  doi =		{10.4230/LIPIcs.CCC.2023.14},
  annote =	{Keywords: Relaxed Locally Decodable Codes, Hamming Errors, Insdel Errors, Lower Bounds}
}
Document
Tight Correlation Bounds for Circuits Between AC0 and TC0

Authors: Vinayak M. Kumar

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We initiate the study of generalized AC⁰ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight ≥ k (up to negations of the input bits), which we denote GC⁰(k). The gate set of this class includes biased LTFs like the k-OR (outputs 1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can be seen as an interpolation between AC⁰ and TC⁰. We establish a tight multi-switching lemma for GC⁰(k) circuits, which bounds the probability that several depth-2 GC⁰(k) circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-d size-s AC⁰ circuits lifts to depth-d size-s^{.99} GC⁰(.01 log s) circuits with no loss in parameters (other than hidden constants). Our result has the following applications: - Size-2^Ω(n^{1/d}) depth-d GC⁰(Ω(n^{1/d})) circuits do not correlate with parity (extending a result of Håstad (SICOMP, 2014)). - Size-n^Ω(log n) GC⁰(Ω(log² n)) circuits with n^{.249} arbitrary threshold gates or n^{.499} arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). - There is a seed length O((log m)^{d-1}log(m/ε)log log(m)) pseudorandom generator against size-m depth-d GC⁰(log m) circuits, matching the AC⁰ lower bound of Håstad up to a log log m factor (extending a result of Lyu (CCC, 2022)). - Size-m GC⁰(log m) circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).

Cite as

Vinayak M. Kumar. Tight Correlation Bounds for Circuits Between AC0 and TC0. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 18:1-18:40, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kumar:LIPIcs.CCC.2023.18,
  author =	{Kumar, Vinayak M.},
  title =	{{Tight Correlation Bounds for Circuits Between AC0 and TC0}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{18:1--18:40},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.18},
  URN =		{urn:nbn:de:0030-drops-182885},
  doi =		{10.4230/LIPIcs.CCC.2023.18},
  annote =	{Keywords: AC⁰, TC⁰, Switching Lemma, Lower Bounds, Correlation Bounds, Circuit Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

Authors: Kuan Cheng, Zhengzhong Jin, Xin Li, Zhide Wei, and Yu Zheng

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
This work continues the study of linear error correcting codes against adversarial insertion deletion errors (insdel errors). Previously, the work of Cheng, Guruswami, Haeupler, and Li [Kuan Cheng et al., 2021] showed the existence of asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant size alphabet, or achieve rate arbitrarily close to 1/2 even over the binary alphabet. As shown in [Kuan Cheng et al., 2021], these bounds are also the best possible. However, known explicit constructions in [Kuan Cheng et al., 2021], and subsequent improved constructions by Con, Shpilka, and Tamo [Con et al., 2022] all fall short of meeting these bounds. Over any constant size alphabet, they can only achieve rate < 1/8 or correct < 1/4 fraction of errors; over the binary alphabet, they can only achieve rate < 1/1216 or correct < 1/54 fraction of errors. Apparently, previous techniques face inherent barriers to achieve rate better than 1/4 or correct more than 1/2 fraction of errors. In this work we give new constructions of such codes that meet these bounds, namely, asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant size alphabet, and binary asymptotically good linear insdel codes that can achieve rate arbitrarily close to 1/2. All our constructions are efficiently encodable and decodable. Our constructions are based on a novel approach of code concatenation, which embeds the index information implicitly into codewords. This significantly differs from previous techniques and may be of independent interest. Finally, we also prove the existence of linear concatenated insdel codes with parameters that match random linear codes, and propose a conjecture about linear insdel codes.

Cite as

Kuan Cheng, Zhengzhong Jin, Xin Li, Zhide Wei, and Yu Zheng. Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 41:1-41:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.ICALP.2023.41,
  author =	{Cheng, Kuan and Jin, Zhengzhong and Li, Xin and Wei, Zhide and Zheng, Yu},
  title =	{{Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{41:1--41:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.41},
  URN =		{urn:nbn:de:0030-drops-180931},
  doi =		{10.4230/LIPIcs.ICALP.2023.41},
  annote =	{Keywords: Error correcting code, Edit distance, Pseudorandomness, Derandomization}
}
Document
Improved Pseudorandom Generators for AC⁰ Circuits

Authors: Xin Lyu

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We give PRG for depth-d, size-m AC⁰ circuits with seed length O(log^{d-1}(m)log(m/ε)log log(m)). Our PRG improves on previous work [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] from various aspects. It has optimal dependence on 1/ε and is only one "log log(m)" away from the lower bound barrier. For the case of d = 2, the seed length tightly matches the best-known PRG for CNFs [Anindya De et al., 2010; Avishay Tal, 2017]. There are two technical ingredients behind our new result; both of them might be of independent interest. First, we use a partitioning-based approach to construct PRGs based on restriction lemmas for AC⁰. Previous works [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021] usually built PRGs on the Ajtai-Wigderson framework [Miklós Ajtai and Avi Wigderson, 1989]. Compared with them, the partitioning approach avoids the extra "log(n)" factor that usually arises from the Ajtai-Wigderson framework, allowing us to get the almost-tight seed length. The partitioning approach is quite general, and we believe it can help design PRGs for classes beyond constant-depth circuits. Second, improving and extending [Luca Trevisan and Tongke Xue, 2013; Rocco A. Servedio and Li-Yang Tan, 2019; Zander Kelley, 2021], we prove a full derandomization of the powerful multi-switching lemma [Johan Håstad, 2014]. We show that one can use a short random seed to sample a restriction, such that a family of DNFs simultaneously simplifies under the restriction with high probability. This answers an open question in [Zander Kelley, 2021]. Previous derandomizations were either partial (that is, they pseudorandomly choose variables to restrict, and then fix those variables to truly-random bits) or had sub-optimal seed length. In our application, having a fully-derandomized switching lemma is crucial, and the randomness-efficiency of our derandomization allows us to get an almost-tight seed length.

Cite as

Xin Lyu. Improved Pseudorandom Generators for AC⁰ Circuits. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 34:1-34:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lyu:LIPIcs.CCC.2022.34,
  author =	{Lyu, Xin},
  title =	{{Improved Pseudorandom Generators for AC⁰ Circuits}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{34:1--34:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.34},
  URN =		{urn:nbn:de:0030-drops-165963},
  doi =		{10.4230/LIPIcs.CCC.2022.34},
  annote =	{Keywords: pseudorandom generators, derandomization, switching Lemmas, AC⁰}
}
Document
Track A: Algorithms, Complexity and Games
Low-Degree Polynomials Extract From Local Sources

Authors: Omar Alrabiah, Eshan Chattopadhyay, Jesse Goodman, Xin Li, and João Ribeiro

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We continue a line of work on extracting random bits from weak sources that are generated by simple processes. We focus on the model of locally samplable sources, where each bit in the source depends on a small number of (hidden) uniformly random input bits. Also known as local sources, this model was introduced by De and Watson (TOCT 2012) and Viola (SICOMP 2014), and is closely related to sources generated by AC⁰ circuits and bounded-width branching programs. In particular, extractors for local sources also work for sources generated by these classical computational models. Despite being introduced a decade ago, little progress has been made on improving the entropy requirement for extracting from local sources. The current best explicit extractors require entropy n^{1/2}, and follow via a reduction to affine extractors. To start, we prove a barrier showing that one cannot hope to improve this entropy requirement via a black-box reduction of this form. In particular, new techniques are needed. In our main result, we seek to answer whether low-degree polynomials (over 𝔽₂) hold potential for breaking this barrier. We answer this question in the positive, and fully characterize the power of low-degree polynomials as extractors for local sources. More precisely, we show that a random degree r polynomial is a low-error extractor for n-bit local sources with min-entropy Ω(r(nlog n)^{1/r}), and we show that this is tight. Our result leverages several new ingredients, which may be of independent interest. Our existential result relies on a new reduction from local sources to a more structured family, known as local non-oblivious bit-fixing sources. To show its tightness, we prove a "local version" of a structural result by Cohen and Tal (RANDOM 2015), which relies on a new "low-weight" Chevalley-Warning theorem.

Cite as

Omar Alrabiah, Eshan Chattopadhyay, Jesse Goodman, Xin Li, and João Ribeiro. Low-Degree Polynomials Extract From Local Sources. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 10:1-10:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{alrabiah_et_al:LIPIcs.ICALP.2022.10,
  author =	{Alrabiah, Omar and Chattopadhyay, Eshan and Goodman, Jesse and Li, Xin and Ribeiro, Jo\~{a}o},
  title =	{{Low-Degree Polynomials Extract From Local Sources}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.10},
  URN =		{urn:nbn:de:0030-drops-163519},
  doi =		{10.4230/LIPIcs.ICALP.2022.10},
  annote =	{Keywords: Randomness extractors, local sources, samplable sources, AC⁰ circuits, branching programs, low-degree polynomials, Chevalley-Warning}
}
Document
Predecessor on the Ultra-Wide Word RAM

Authors: Philip Bille, Inge Li Gørtz, and Tord Stordalen

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
We consider the predecessor problem on the ultra-wide word RAM model of computation, which extends the word RAM model with ultrawords consisting of w² bits [TAMC, 2015]. The model supports arithmetic and boolean operations on ultrawords, in addition to scattered memory operations that access or modify w (potentially non-contiguous) memory addresses simultaneously. The ultra-wide word RAM model captures (and idealizes) modern vector processor architectures. Our main result is a simple, linear space data structure that supports predecessor in constant time and updates in amortized, expected constant time. This improves the space of the previous constant time solution that uses space in the order of the size of the universe. Our result is based on a new implementation of the classic x-fast trie data structure of Willard [Inform. Process. Lett. 17(2), 1983] combined with a new dictionary data structure that supports fast parallel lookups.

Cite as

Philip Bille, Inge Li Gørtz, and Tord Stordalen. Predecessor on the Ultra-Wide Word RAM. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 18:1-18:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.SWAT.2022.18,
  author =	{Bille, Philip and G{\o}rtz, Inge Li and Stordalen, Tord},
  title =	{{Predecessor on the Ultra-Wide Word RAM}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.18},
  URN =		{urn:nbn:de:0030-drops-161786},
  doi =		{10.4230/LIPIcs.SWAT.2022.18},
  annote =	{Keywords: Ultra-wide word RAM model, predecessor, word-level parallelism}
}
Document
Improved Decoding of Expander Codes

Authors: Xue Chen, Kuan Cheng, Xin Li, and Minghui Ouyang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We study the classical expander codes, introduced by Sipser and Spielman [M. Sipser and D. A. Spielman, 1996]. Given any constants 0 < α, ε < 1/2, and an arbitrary bipartite graph with N vertices on the left, M < N vertices on the right, and left degree D such that any left subset S of size at most α N has at least (1-ε)|S|D neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly {α N}/{2 ε}. This is strictly better than the best known previous result of 2(1-ε) α N [Madhu Sudan, 2000; Viderman, 2013] whenever ε < 1/2, and improves the previous result significantly when ε is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever ε < 1/4. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.

Cite as

Xue Chen, Kuan Cheng, Xin Li, and Minghui Ouyang. Improved Decoding of Expander Codes. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 43:1-43:3, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2022.43,
  author =	{Chen, Xue and Cheng, Kuan and Li, Xin and Ouyang, Minghui},
  title =	{{Improved Decoding of Expander Codes}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{43:1--43:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.43},
  URN =		{urn:nbn:de:0030-drops-156394},
  doi =		{10.4230/LIPIcs.ITCS.2022.43},
  annote =	{Keywords: Expander Code, Decoding}
}
Document
Lower Bounds and Improved Algorithms for Asymmetric Streaming Edit Distance and Longest Common Subsequence

Authors: Xin Li and Yu Zheng

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric streaming model, introduced by Saks and Seshadhri [Saks and Seshadhri, 2013]. As an intermediate model between the random access model and the streaming model, this model allows one to have streaming access to one string and random access to the other string. Meanwhile, ED and LCS are both fundamental problems that are often studied on large strings, thus the (asymmetric) streaming model is ideal for studying these problems. Our first main contribution is a systematic study of space lower bounds for ED and LCS in the asymmetric streaming model. Previously, there are no explicitly stated results in this context, although some lower bounds about LCS can be inferred from the lower bounds for longest increasing subsequence (LIS) in [Sun and Woodruff, 2007; Gál and Gopalan, 2010; Ergun and Jowhari, 2008]. Yet these bounds only work for large alphabet size. In this paper, we develop several new techniques to handle ED in general and LCS for small alphabet size, thus establishing strong lower bounds for both problems. In particular, our lower bound for ED provides an exponential separation between edit distance and Hamming distance in the asymmetric streaming model. Our lower bounds also extend to LIS and longest non-decreasing subsequence (LNS) in the standard streaming model. Together with previous results, our bounds provide an almost complete picture for these two problems. As our second main contribution, we give improved algorithms for ED and LCS in the asymmetric streaming model. For ED, we improve the space complexity of the constant factor approximation algorithms in [Farhadi et al., 2020; Cheng et al., 2020] from Õ({n^δ}/δ) to O({d^δ}/δ polylog(n)), where n is the length of each string and d is the edit distance between the two strings. For LCS, we give the first 1/2+ε approximation algorithm with space n^δ for any constant δ > 0, over a binary alphabet. Our work leaves a plethora of intriguing open questions, including establishing lower bounds and designing algorithms for a natural generalization of LIS and LNS, which we call longest non-decreasing subsequence with threshold (LNST).

Cite as

Xin Li and Yu Zheng. Lower Bounds and Improved Algorithms for Asymmetric Streaming Edit Distance and Longest Common Subsequence. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 27:1-27:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.FSTTCS.2021.27,
  author =	{Li, Xin and Zheng, Yu},
  title =	{{Lower Bounds and Improved Algorithms for Asymmetric Streaming Edit Distance and Longest Common Subsequence}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{27:1--27:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.27},
  URN =		{urn:nbn:de:0030-drops-155381},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.27},
  annote =	{Keywords: Asymmetric Streaming Model, Edit Distance, Longest Common Subsequence, Space Lower Bound}
}
Document
Track A: Algorithms, Complexity and Games
Streaming and Small Space Approximation Algorithms for Edit Distance and Longest Common Subsequence

Authors: Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad Rubinstein, Saeed Seddighin, and Yu Zheng

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The edit distance (ED) and longest common subsequence (LCS) are two fundamental problems which quantify how similar two strings are to one another. In this paper, we first consider these problems in the asymmetric streaming model introduced by Andoni, Krauthgamer and Onak [Andoni et al., 2010] (FOCS'10) and Saks and Seshadhri [Saks and Seshadhri, 2013] (SODA'13). In this model we have random access to one string and streaming access the other one. Our main contribution is a constant factor approximation algorithm for ED with memory Õ(n^δ) for any constant δ > 0. In addition to this, we present an upper bound of Õ _ε(√n) on the memory needed to approximate ED or LCS within a factor 1±ε. All our algorithms are deterministic and run in polynomial time in a single pass. We further study small-space approximation algorithms for ED, LCS, and longest increasing sequence (LIS) in the non-streaming setting. Here, we design algorithms that achieve 1 ± ε approximation for all three problems, where ε > 0 can be any constant and even slightly sub-constant. Our algorithms only use poly-logarithmic space while maintaining a polynomial running time. This significantly improves previous results in terms of space complexity, where all known results need to use space at least Ω(√n). Our algorithms make novel use of triangle inequality and carefully designed recursions to save space, which can be of independent interest.

Cite as

Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad Rubinstein, Saeed Seddighin, and Yu Zheng. Streaming and Small Space Approximation Algorithms for Edit Distance and Longest Common Subsequence. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 54:1-54:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.ICALP.2021.54,
  author =	{Cheng, Kuan and Farhadi, Alireza and Hajiaghayi, MohammadTaghi and Jin, Zhengzhong and Li, Xin and Rubinstein, Aviad and Seddighin, Saeed and Zheng, Yu},
  title =	{{Streaming and Small Space Approximation Algorithms for Edit Distance and Longest Common Subsequence}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{54:1--54:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.54},
  URN =		{urn:nbn:de:0030-drops-141236},
  doi =		{10.4230/LIPIcs.ICALP.2021.54},
  annote =	{Keywords: Edit Distance, Longest Common Subsequence, Longest Increasing Subsequence, Space Efficient Algorithm, Approximation Algorithm}
}
Document
Non-Malleable Extractors and Non-Malleable Codes: Partially Optimal Constructions

Authors: Xin Li

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
The recent line of study on randomness extractors has been a great success, resulting in exciting new techniques, new connections, and breakthroughs to long standing open problems in several seemingly different topics. These include seeded non-malleable extractors, privacy amplification protocols with an active adversary, independent source extractors (and explicit Ramsey graphs), and non-malleable codes in the split state model. Previously, the best constructions are given in [Xin Li, 2017]: seeded non-malleable extractors with seed length and entropy requirement O(log n+log(1/epsilon)log log (1/epsilon)) for error epsilon; two-round privacy amplification protocols with optimal entropy loss for security parameter up to Omega(k/log k), where k is the entropy of the shared weak source; two-source extractors for entropy O(log n log log n); and non-malleable codes in the 2-split state model with rate Omega(1/log n). However, in all cases there is still a gap to optimum and the motivation to close this gap remains strong. In this paper, we introduce a set of new techniques to further push the frontier in the above questions. Our techniques lead to improvements in all of the above questions, and in several cases partially optimal constructions. This is in contrast to all previous work, which only obtain close to optimal constructions. Specifically, we obtain: 1) A seeded non-malleable extractor with seed length O(log n)+log^{1+o(1)}(1/epsilon) and entropy requirement O(log log n+log(1/epsilon)), where the entropy requirement is asymptotically optimal by a recent result of Gur and Shinkar [Tom Gur and Igor Shinkar, 2018]; 2) A two-round privacy amplification protocol with optimal entropy loss for security parameter up to Omega(k), which solves the privacy amplification problem completely; 3) A two-source extractor for entropy O((log n log log n)/(log log log n)), which also gives an explicit Ramsey graph on N vertices with no clique or independent set of size (log N)^{O((log log log N)/(log log log log N))}; and 4) The first explicit non-malleable code in the 2-split state model with constant rate, which has been a major goal in the study of non-malleable codes for quite some time. One small caveat is that the error of this code is only (an arbitrarily small) constant, but we can also achieve negligible error with rate Omega(log log log n/log log n), which already improves the rate in [Xin Li, 2017] exponentially. We believe our new techniques can help to eventually obtain completely optimal constructions in the above questions, and may have applications in other settings.

Cite as

Xin Li. Non-Malleable Extractors and Non-Malleable Codes: Partially Optimal Constructions. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 28:1-28:49, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{li:LIPIcs.CCC.2019.28,
  author =	{Li, Xin},
  title =	{{Non-Malleable Extractors and Non-Malleable Codes: Partially Optimal Constructions}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{28:1--28:49},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.28},
  URN =		{urn:nbn:de:0030-drops-108507},
  doi =		{10.4230/LIPIcs.CCC.2019.28},
  annote =	{Keywords: extractor, non-malleable, privacy, codes}
}
Document
Track A: Algorithms, Complexity and Games
Block Edit Errors with Transpositions: Deterministic Document Exchange Protocols and Almost Optimal Binary Codes

Authors: Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Document exchange and error correcting codes are two fundamental problems regarding communications. In the first problem, Alice and Bob each holds a string, and the goal is for Alice to send a short sketch to Bob, so that Bob can recover Alice’s string. In the second problem, Alice sends a message with some redundant information to Bob through a channel that can add adversarial errors, and the goal is for Bob to correctly recover the message despite the errors. In both problems, an upper bound is placed on the number of errors between the two strings or that the channel can add, and a major goal is to minimize the size of the sketch or the redundant information. In this paper we focus on deterministic document exchange protocols and binary error correcting codes. Both problems have been studied extensively. In the case of Hamming errors (i.e., bit substitutions) and bit erasures, we have explicit constructions with asymptotically optimal parameters. However, other error types are still rather poorly understood. In a recent work [Kuan Cheng et al., 2018], the authors constructed explicit deterministic document exchange protocols and binary error correcting codes for edit errors with almost optimal parameters. Unfortunately, the constructions in [Kuan Cheng et al., 2018] do not work for other common errors such as block transpositions. In this paper, we generalize the constructions in [Kuan Cheng et al., 2018] to handle a much larger class of errors. These include bursts of insertions and deletions, as well as block transpositions. Specifically, we consider document exchange and error correcting codes where the total number of block insertions, block deletions, and block transpositions is at most k <= alpha n/log n for some constant 0<alpha<1. In addition, the total number of bits inserted and deleted by the first two kinds of operations is at most t <= beta n for some constant 0<beta<1, where n is the length of Alice’s string or message. We construct explicit, deterministic document exchange protocols with sketch size O((k log n +t) log^2 n/{k log n + t}) and explicit binary error correcting code with O(k log n log log log n+t) redundant bits. As a comparison, the information-theoretic optimum for both problems is Theta(k log n+t). As far as we know, previously there are no known explicit deterministic document exchange protocols in this case, and the best known binary code needs Omega(n) redundant bits even to correct just one block transposition [L. J. Schulman and D. Zuckerman, 1999].

Cite as

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block Edit Errors with Transpositions: Deterministic Document Exchange Protocols and Almost Optimal Binary Codes. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 37:1-37:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.ICALP.2019.37,
  author =	{Cheng, Kuan and Jin, Zhengzhong and Li, Xin and Wu, Ke},
  title =	{{Block Edit Errors with Transpositions: Deterministic Document Exchange Protocols and Almost Optimal Binary Codes}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{37:1--37:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.37},
  URN =		{urn:nbn:de:0030-drops-106137},
  doi =		{10.4230/LIPIcs.ICALP.2019.37},
  annote =	{Keywords: Deterministic document exchange, error correcting code, block edit error}
}
Document
Randomness Extraction in AC0 and with Small Locality

Authors: Kuan Cheng and Xin Li

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
Randomness extractors, which extract high quality (almost-uniform) random bits from biased random sources, are important objects both in theory and in practice. While there have been significant progress in obtaining near optimal constructions of randomness extractors in various settings, the computational complexity of randomness extractors is still much less studied. In particular, it is not clear whether randomness extractors with good parameters can be computed in several interesting complexity classes that are much weaker than P. In this paper we study randomness extractors in the following two models of computation: (1) constant-depth circuits (AC^0), and (2) the local computation model. Previous work in these models, such as [Viola, 2005], [Goldreich et al., 2015] and [Bogdanov and Guo, 2013], only achieve constructions with weak parameters. In this work we give explicit constructions of randomness extractors with much better parameters. Our results on AC^0 extractors refute a conjecture in [Goldreich et al., 2015] and answer several open problems there. We also provide a lower bound on the error of extractors in AC^0, which together with the entropy lower bound in [Viola, 2005; Goldreich et al., 2015] almost completely characterizes extractors in this class. Our results on local extractors also significantly improve the seed length in [Bogdanov and Guo, 2013]. As an application, we use our AC^0 extractors to study pseudorandom generators in AC^0, and show that we can construct both cryptographic pseudorandom generators (under reasonable computational assumptions) and unconditional pseudorandom generators for space bounded computation with very good parameters. Our constructions combine several previous techniques in randomness extractors, as well as introduce new techniques to reduce or preserve the complexity of extractors, which may be of independent interest. These include (1) a general way to reduce the error of strong seeded extractors while preserving the AC^0 property and small locality, and (2) a seeded randomness condenser with small locality.

Cite as

Kuan Cheng and Xin Li. Randomness Extraction in AC0 and with Small Locality. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 37:1-37:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{cheng_et_al:LIPIcs.APPROX-RANDOM.2018.37,
  author =	{Cheng, Kuan and Li, Xin},
  title =	{{Randomness Extraction in AC0 and with Small Locality}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.37},
  URN =		{urn:nbn:de:0030-drops-94414},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.37},
  annote =	{Keywords: Randomness Extraction, AC0, Locality, Pseudorandom Generator}
}
Document
Sunflowers and Quasi-Sunflowers from Randomness Extractors

Authors: Xin Li, Shachar Lovett, and Jiapeng Zhang

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
The Erdös-Rado sunflower theorem (Journal of Lond. Math. Soc. 1960) is a fundamental result in combinatorics, and the corresponding sunflower conjecture is a central open problem. Motivated by applications in complexity theory, Rossman (FOCS 2010) extended the result to quasi-sunflowers, where similar conjectures emerge about the optimal parameters for which it holds. In this work, we exhibit a surprising connection between the existence of sunflowers and quasi-sunflowers in large enough set systems, and the problem of constructing (or existing) certain randomness extractors. This allows us to re-derive the known results in a systematic manner, and to reduce the relevant conjectures to the problem of obtaining improved constructions of the randomness extractors.

Cite as

Xin Li, Shachar Lovett, and Jiapeng Zhang. Sunflowers and Quasi-Sunflowers from Randomness Extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 51:1-51:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX-RANDOM.2018.51,
  author =	{Li, Xin and Lovett, Shachar and Zhang, Jiapeng},
  title =	{{Sunflowers and Quasi-Sunflowers from Randomness Extractors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{51:1--51:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.51},
  URN =		{urn:nbn:de:0030-drops-94555},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.51},
  annote =	{Keywords: Sunflower conjecture, Quasi-sunflowers, Randomness Extractors}
}
Document
A New Approach for Constructing Low-Error, Two-Source Extractors

Authors: Avraham Ben-Aroya, Eshan Chattopadhyay, Dean Doron, Xin Li, and Amnon Ta-Shma

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
Our main contribution in this paper is a new reduction from explicit two-source extractors for polynomially-small entropy rate and negligible error to explicit t-non-malleable extractors with seed-length that has a good dependence on t. Our reduction is based on the Chattopadhyay and Zuckerman framework (STOC 2016), and surprisingly we dispense with the use of resilient functions which appeared to be a major ingredient there and in follow-up works. The use of resilient functions posed a fundamental barrier towards achieving negligible error, and our new reduction circumvents this bottleneck. The parameters we require from t-non-malleable extractors for our reduction to work hold in a non-explicit construction, but currently it is not known how to explicitly construct such extractors. As a result we do not give an unconditional construction of an explicit low-error two-source extractor. Nonetheless, we believe our work gives a viable approach for solving the important problem of low-error two-source extractors. Furthermore, our work highlights an existing barrier in constructing low-error two-source extractors, and draws attention to the dependence of the parameter t in the seed-length of the non-malleable extractor. We hope this work would lead to further developments in explicit constructions of both non-malleable and two-source extractors.

Cite as

Avraham Ben-Aroya, Eshan Chattopadhyay, Dean Doron, Xin Li, and Amnon Ta-Shma. A New Approach for Constructing Low-Error, Two-Source Extractors. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 3:1-3:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{benaroya_et_al:LIPIcs.CCC.2018.3,
  author =	{Ben-Aroya, Avraham and Chattopadhyay, Eshan and Doron, Dean and Li, Xin and Ta-Shma, Amnon},
  title =	{{A New Approach for Constructing Low-Error, Two-Source Extractors}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.3},
  URN =		{urn:nbn:de:0030-drops-88877},
  doi =		{10.4230/LIPIcs.CCC.2018.3},
  annote =	{Keywords: Two-Source Extractors, Non-Malleable Extractors, Pseudorandomness, Explicit Constructions}
}
Document
Computing Approximate PSD Factorizations

Authors: Amitabh Basu, Michael Dinitz, and Xin Li

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be captured by letting this polyhedron to be the nonnegative orthant.

Cite as

Amitabh Basu, Michael Dinitz, and Xin Li. Computing Approximate PSD Factorizations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 2:1-2:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{basu_et_al:LIPIcs.APPROX-RANDOM.2016.2,
  author =	{Basu, Amitabh and Dinitz, Michael and Li, Xin},
  title =	{{Computing Approximate PSD Factorizations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{2:1--2:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.2},
  URN =		{urn:nbn:de:0030-drops-66258},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.2},
  annote =	{Keywords: PSD rank, PSD factorizations}
}
  • Refine by Author
  • 13 Li, Xin
  • 6 Cheng, Kuan
  • 4 Zheng, Yu
  • 3 Jin, Zhengzhong
  • 2 Chattopadhyay, Eshan
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Pseudorandomness and derandomization
  • 3 Mathematics of computing → Coding theory
  • 2 Theory of computation → Error-correcting codes
  • 2 Theory of computation → Expander graphs and randomness extractors
  • 2 Theory of computation → Lower bounds and information complexity
  • Show More...

  • Refine by Keyword
  • 2 AC⁰
  • 2 Edit Distance
  • 2 Longest Common Subsequence
  • 2 Lower Bounds
  • 2 Pseudorandomness
  • Show More...

  • Refine by Type
  • 16 document

  • Refine by Publication Year
  • 4 2022
  • 3 2018
  • 3 2023
  • 2 2019
  • 2 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail