6 Search Results for "Lin, Anthony Widjaja"


Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
On Continuous Pushdown VASS in One Dimension

Authors: Guillermo A. Pérez and Shrisha Rao

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown stack. The algorithmic analysis of PVASS has applications such as static analysis of recursive programs manipulating integer variables. Unfortunately, reachability analysis, even for one-dimensional PVASS is not known to be decidable. So, we relax the model of one-dimensional PVASS to make the counter updates continuous and show that in this case reachability, coverability, and boundedness are decidable in polynomial time. In addition, for the extension of the model with lower-bound guards on the states, we show that coverability and reachability are NP-complete, and boundedness is coNP-complete.

Cite as

Guillermo A. Pérez and Shrisha Rao. On Continuous Pushdown VASS in One Dimension. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 34:1-34:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CONCUR.2024.34,
  author =	{P\'{e}rez, Guillermo A. and Rao, Shrisha},
  title =	{{On Continuous Pushdown VASS in One Dimension}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{34:1--34:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.34},
  URN =		{urn:nbn:de:0030-drops-208065},
  doi =		{10.4230/LIPIcs.CONCUR.2024.34},
  annote =	{Keywords: Vector addition systems, Pushdown automata, Reachability}
}
Document
Representation of Peano Arithmetic in Separation Logic

Authors: Sohei Ito and Makoto Tatsuta

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Separation logic is successful for software verification of heap-manipulating programs. Numbers are necessary to be added to separation logic for verification of practical software where numbers are important. However, properties of the validity such as decidability and complexity for separation logic with numbers have not been fully studied yet. This paper presents the translation of Pi-0-1 formulas in Peano arithmetic to formulas in a small fragment of separation logic with numbers, which consists only of the intuitionistic points-to predicate, 0 and the successor function. Then this paper proves that a formula in Peano arithmetic is valid in the standard model if and only if its translation in this fragment is valid in the standard interpretation. As a corollary, this paper also gives a perspective proof for the undecidability of the validity in this fragment. Since Pi-0-1 formulas can describe consistency of logical systems and non-termination of computations, this result also shows that these properties discussed in Peano arithmetic can also be discussed in such a small fragment of separation logic with numbers.

Cite as

Sohei Ito and Makoto Tatsuta. Representation of Peano Arithmetic in Separation Logic. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.FSCD.2024.18,
  author =	{Ito, Sohei and Tatsuta, Makoto},
  title =	{{Representation of Peano Arithmetic in Separation Logic}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.18},
  URN =		{urn:nbn:de:0030-drops-203476},
  doi =		{10.4230/LIPIcs.FSCD.2024.18},
  annote =	{Keywords: First order logic, Separation logic, Peano arithmetic, Presburger arithmetic}
}
Document
Concurrent Stochastic Lossy Channel Games

Authors: Daniel Stan, Muhammad Najib, Anthony Widjaja Lin, and Parosh Aziz Abdulla

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
Concurrent stochastic games are an important formalism for the rational verification of probabilistic multi-agent systems, which involves verifying whether a temporal logic property is satisfied in some or all game-theoretic equilibria of such systems. In this work, we study the rational verification of probabilistic multi-agent systems where agents can cooperate by communicating over unbounded lossy channels. To model such systems, we present concurrent stochastic lossy channel games (CSLCG) and employ an equilibrium concept from cooperative game theory known as the core, which is the most fundamental and widely studied cooperative equilibrium concept. Our main contribution is twofold. First, we show that the rational verification problem is undecidable for systems whose agents have almost-sure LTL objectives. Second, we provide a decidable fragment of such a class of objectives that subsumes almost-sure reachability and safety. Our techniques involve reductions to solving infinite-state zero-sum games with conjunctions of qualitative objectives. To the best of our knowledge, our result represents the first decidability result on the rational verification of stochastic multi-agent systems on infinite arenas.

Cite as

Daniel Stan, Muhammad Najib, Anthony Widjaja Lin, and Parosh Aziz Abdulla. Concurrent Stochastic Lossy Channel Games. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 46:1-46:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{stan_et_al:LIPIcs.CSL.2024.46,
  author =	{Stan, Daniel and Najib, Muhammad and Lin, Anthony Widjaja and Abdulla, Parosh Aziz},
  title =	{{Concurrent Stochastic Lossy Channel Games}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{46:1--46:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.46},
  URN =		{urn:nbn:de:0030-drops-196894},
  doi =		{10.4230/LIPIcs.CSL.2024.46},
  annote =	{Keywords: concurrent, games, stochastic, lossy channels, wqo, finite attractor property, cooperative, core, Nash equilibrium}
}
Document
Accelerating tree-automatic relations

Authors: Anthony Widjaja Lin

Published in: LIPIcs, Volume 18, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)


Abstract
We study the problem of computing the transitive closure of tree-automatic (binary) relations, which are represented by tree automata. Such relations include classes of infinite systems generated by pushdown systems (PDS), ground tree rewrite systems (GTRS), PA-processes, and Turing machines, to name a few. Although this problem is unsolvable in general, we provide a semi-algorithm for the problem and prove completeness guarantee for PDS, GTRS, and PA-processes. The semi-algorithm is an extension of a known semi-algorithm for structure-preserving tree-automatic relations, for which completeness is guaranteed for several interesting parameterized systems over tree topology. Hence, there is a single generic procedure that solves reachability for PDS, GTRS, PA-processes, and several parameterized systems in a uniform way. As an application, we provide a single generic semi-algorithm for checking repeated reachability over tree-automatic relations, for which completeness is guaranteed for the aforementioned classes.

Cite as

Anthony Widjaja Lin. Accelerating tree-automatic relations. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 18, pp. 313-324, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{lin:LIPIcs.FSTTCS.2012.313,
  author =	{Lin, Anthony Widjaja},
  title =	{{Accelerating tree-automatic relations}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)},
  pages =	{313--324},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-47-7},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{18},
  editor =	{D'Souza, Deepak and Radhakrishnan, Jaikumar and Telikepalli, Kavitha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2012.313},
  URN =		{urn:nbn:de:0030-drops-38691},
  doi =		{10.4230/LIPIcs.FSTTCS.2012.313},
  annote =	{Keywords: Semi-algorithm, Model Checking, Infinite Systems, Automata}
}
Document
Concurrency Makes Simple Theories Hard

Authors: Stefan Göller and Anthony Widjaja Lin

Published in: LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)


Abstract
A standard way of building concurrent systems is by composing several individual processes by product operators. We show that even the simplest notion of product operators (i.e. asynchronous products) suffices to increase the complexity of model checking simple logics like Hennessy-Milner (HM) logic and its extension with the reachability operator (EF-logic) from PSPACE to nonelementary. In particular, this nonelementary jump happens for EF-logic when we consider individual processes represented by pushdown systems (indeed, even with only one control state). Using this result, we prove nonelementary lower bounds on the size of formula decompositions provided by Feferman-Vaught (de)compositional methods for HM and EF logics, which reduce theories of asynchronous products to theories of the components. Finally, we show that the same nonelementary lower bounds also hold when we consider the relativization of such compositional methods to finite systems.

Cite as

Stefan Göller and Anthony Widjaja Lin. Concurrency Makes Simple Theories Hard. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 148-159, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{goller_et_al:LIPIcs.STACS.2012.148,
  author =	{G\"{o}ller, Stefan and Widjaja Lin, Anthony},
  title =	{{Concurrency Makes Simple Theories Hard}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{148--159},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{D\"{u}rr, Christoph and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.148},
  URN =		{urn:nbn:de:0030-drops-34214},
  doi =		{10.4230/LIPIcs.STACS.2012.148},
  annote =	{Keywords: Modal Logic, Model Checking, Asynchronous Product, Pushdown Systems, Feferman-Vaught, Nonelementary lower bounds}
}
  • Refine by Author
  • 2 Lin, Anthony Widjaja
  • 1 Abdulla, Parosh Aziz
  • 1 Chistikov, Dmitry
  • 1 Göller, Stefan
  • 1 Ito, Sohei
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Concurrency
  • 1 Theory of computation → Formal languages and automata theory
  • 1 Theory of computation → Grammars and context-free languages
  • 1 Theory of computation → Models of computation
  • 1 Theory of computation → Separation logic
  • Show More...

  • Refine by Keyword
  • 2 Model Checking
  • 1 Asynchronous Product
  • 1 Automata
  • 1 Feferman-Vaught
  • 1 First order logic
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 4 2024
  • 2 2012

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail