11 Search Results for "Lin, Han-Hsuan"


Document
DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance

Authors: Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode to understand smart contracts, many rely on documentation. Therefore, discrepancies between the documentation and the deployed code can pose significant risks, whether these discrepancies are due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner, an end-to-end system to identify inconsistencies between documentation and smart contracts. DeFiAligner incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary code, recording memory and stack states. It automatically generates symbolic expressions for token balance changes and branch conditions, which, along with related project documents, are processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate DeFiAligner’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92% and 90% on two public datasets respectively.

Cite as

Rundong Gan, Liyi Zhou, Le Wang, Kaihua Qin, and Xiaodong Lin. DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.AFT.2024.7,
  author =	{Gan, Rundong and Zhou, Liyi and Wang, Le and Qin, Kaihua and Lin, Xiaodong},
  title =	{{DeFiAligner: Leveraging Symbolic Analysis and Large Language Models for Inconsistency Detection in Decentralized Finance}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.7},
  URN =		{urn:nbn:de:0030-drops-209431},
  doi =		{10.4230/LIPIcs.AFT.2024.7},
  annote =	{Keywords: Decentralized Finance Security, Large Language Models, Project Review, Symbolic Analysis, Smart Contracts}
}
Document
Constraint Modelling with LLMs Using In-Context Learning

Authors: Kostis Michailidis, Dimos Tsouros, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We present different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities.

Cite as

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-Context Learning. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 20:1-20:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{michailidis_et_al:LIPIcs.CP.2024.20,
  author =	{Michailidis, Kostis and Tsouros, Dimos and Guns, Tias},
  title =	{{Constraint Modelling with LLMs Using In-Context Learning}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{20:1--20:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20},
  URN =		{urn:nbn:de:0030-drops-207053},
  doi =		{10.4230/LIPIcs.CP.2024.20},
  annote =	{Keywords: Constraint Modelling, Constraint Acquisition, Constraint Programming, Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recognition, Retrieval-Augmented Generation, Optimisation}
}
Document
Antichain with SAT and Tries

Authors: Lukáš Holík and Pavol Vargovčík

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
We introduce a SAT-enabled version of an antichain algorithm for checking language emptiness of alternating finite automata (AFA) with complex transition relations encoded as compact logical formulae. The SAT solver is used to compute predecessors of AFA configurations, and at the same time, to evaluate the subsumption of newly found configurations in the antichain of the previously found ones. The algorithm could be naively implemented by an incremental SAT solver where the growing antichain is represented by adding new clauses. To make it efficient, we 1) force the SAT solver to prioritize largest/subsumption-strongest predecessors (so that weaker configurations are not even generated), and 2) store the antichain clauses in a special variant of a trie that allows fast subsumption testing. The experimental results suggest that the resulting emptiness checker is very efficient compared to the state of the art and that our techniques improve the performance of the SAT solver.

Cite as

Lukáš Holík and Pavol Vargovčík. Antichain with SAT and Tries. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 15:1-15:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{holik_et_al:LIPIcs.SAT.2024.15,
  author =	{Hol{\'\i}k, Luk\'{a}\v{s} and Vargov\v{c}{\'\i}k, Pavol},
  title =	{{Antichain with SAT and Tries}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{15:1--15:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.15},
  URN =		{urn:nbn:de:0030-drops-205372},
  doi =		{10.4230/LIPIcs.SAT.2024.15},
  annote =	{Keywords: SAT, Trie, Antichain, Alternating automata, Subset query}
}
Document
Optimal Layout Synthesis for Deep Quantum Circuits on NISQ Processors with 100+ Qubits

Authors: Irfansha Shaik and Jaco van de Pol

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Layout synthesis is mapping a quantum circuit to a quantum processor. SWAP gate insertions are needed for scheduling 2-qubit gates only on connected physical qubits. With the ever-increasing number of qubits in NISQ processors, scalable layout synthesis is of utmost importance. With large optimality gaps observed in heuristic approaches, scalable exact methods are needed. While recent exact and near-optimal approaches scale to moderate circuits, large deep circuits are still out of scope. In this work, we propose a SAT encoding based on parallel plans that apply 1 SWAP and a group of CNOTs at each time step. Using domain-specific information, we maintain optimality in parallel plans while scaling to large and deep circuits. From our results, we show the scalability of our approach which significantly outperforms leading exact and near-optimal approaches (up to 100x). For the first time, we can optimally map several 8, 14, and 16 qubit circuits onto 54, 80, and 127 qubit platforms with up to 17 SWAPs. While adding optimal SWAPs, we also report near-optimal depth in our mapped circuits.

Cite as

Irfansha Shaik and Jaco van de Pol. Optimal Layout Synthesis for Deep Quantum Circuits on NISQ Processors with 100+ Qubits. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{shaik_et_al:LIPIcs.SAT.2024.26,
  author =	{Shaik, Irfansha and van de Pol, Jaco},
  title =	{{Optimal Layout Synthesis for Deep Quantum Circuits on NISQ Processors with 100+ Qubits}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.26},
  URN =		{urn:nbn:de:0030-drops-205487},
  doi =		{10.4230/LIPIcs.SAT.2024.26},
  annote =	{Keywords: Layout Synthesis, Transpiling, Qubit Mapping and Routing, Quantum Circuits, Propositional Satisfiability, Parallel Plans}
}
Document
On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation

Authors: Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin, Yao-Ting Lin, and Yu-Ching Shen

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
Hamiltonian simulation is one of the most important problems in the field of quantum computing. There have been extended efforts on designing algorithms for faster simulation, and the evolution time T for the simulation greatly affect algorithm runtime as expected. While there are some specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time o(T), for some large classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms require running time at least linear in the evolution time T. On the other hand, while there exist lower bounds of Ω(T) circuit size for some large classes of Hamiltonian, these lower bounds do not rule out the possibilities of Hamiltonian simulation with large but "low-depth" circuits by running things in parallel. As a result, physical systems with system size scaling with T can potentially do a fast-forwarding simulation. Therefore, it is intriguing whether we can achieve fast Hamiltonian simulation with the power of parallelism. In this work, we give a negative result for the above open problem in various settings. In the oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated via an oracle circuit of depth o(T). In the plain model, relying on the random oracle heuristic, we show that there exist time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians on n qubits that cannot be simulated via an oracle circuit of depth o(T/n^c), where the Hamiltonians act on n qubits, and c is a constant. Lastly, we generalize the above results and show that any simulators that are geometrically local Hamiltonians cannot do the simulation much faster than parallel quantum algorithms.

Cite as

Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin, Yao-Ting Lin, and Yu-Ching Shen. On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 33:1-33:45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.CCC.2023.33,
  author =	{Chia, Nai-Hui and Chung, Kai-Min and Hsieh, Yao-Ching and Lin, Han-Hsuan and Lin, Yao-Ting and Shen, Yu-Ching},
  title =	{{On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{33:1--33:45},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.33},
  URN =		{urn:nbn:de:0030-drops-183038},
  doi =		{10.4230/LIPIcs.CCC.2023.33},
  annote =	{Keywords: Hamiltonian simulation, Depth lower bound, Parallel query lower bound}
}
Document
Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem

Authors: Kai-Min Chung and Han-Hsuan Lin

Published in: LIPIcs, Volume 197, 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)


Abstract
The probably approximately correct (PAC) model [Leslie G. Valiant, 1984] is a well studied model in classical learning theory. Here, we generalize the PAC model from concepts of Boolean functions to quantum channels, introducing PAC model for learning quantum channels, and give two sample efficient algorithms that are analogous to the classical "Occam’s razor" result [Blumer et al., 1987]. The classical Occam’s razor algorithm is done trivially by excluding any concepts not compatible with the input-output pairs one gets, but such an approach is not immediately possible with a concept class of quantum channels, because the outputs are unknown quantum states from the quantum channel. To study the quantum state learning problem associated with PAC learning quantum channels, we focus on the special case where the channels all have constant output. In this special case, learning the channels reduce to a problem of learning quantum states that is similar to the well known quantum state discrimination problem [Joonwoo Bae and Leong-Chuan Kwek, 2017], but with the extra twist that we allow ε-trace-distance-error in the output. We call this problem Approximate State Discrimination, which we believe is a natural problem that is of independent interest. We give two algorithms for learning quantum channels in PAC model. The first algorithm has sample complexity O((log|C| + log(1/ δ))/(ε²)), but only works when the outputs are pure states, where C is the concept class, ε is the error of the output, and δ is the probability of failure of the algorithm. The second algorithm has sample complexity O((log³|C|(log|C|+log(1/ δ)))/(ε²)), and work for mixed state outputs. Some implications of our results are that we can PAC-learn a polynomial sized quantum circuit in polynomial samples, and approximate state discrimination can be solved in polynomial samples even when the size of the input set is exponential in the number of qubits, exponentially better than a naive state tomography.

Cite as

Kai-Min Chung and Han-Hsuan Lin. Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 197, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chung_et_al:LIPIcs.TQC.2021.3,
  author =	{Chung, Kai-Min and Lin, Han-Hsuan},
  title =	{{Sample Efficient Algorithms for Learning Quantum Channels in PAC Model and the Approximate State Discrimination Problem}},
  booktitle =	{16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)},
  pages =	{3:1--3:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-198-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{197},
  editor =	{Hsieh, Min-Hsiu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2021.3},
  URN =		{urn:nbn:de:0030-drops-139984},
  doi =		{10.4230/LIPIcs.TQC.2021.3},
  annote =	{Keywords: PAC learning, Quantum PAC learning, Sample Complexity, Approximate State Discrimination, Quantum information}
}
Document
Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension

Authors: Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
We present two efficient classical analogues of the quantum matrix inversion algorithm [Harrow et al., 2009] for low-rank matrices. Inspired by recent work of Tang [Tang, 2019], assuming length-square sampling access to input data, we implement the pseudoinverse of a low-rank matrix allowing us to sample from the solution to the problem Ax = b using fast sampling techniques. We construct implicit descriptions of the pseudo-inverse by finding approximate singular value decomposition of A via subsampling, then inverting the singular values. In principle, our approaches can also be used to apply any desired "smooth" function to the singular values. Since many quantum algorithms can be expressed as a singular value transformation problem [András Gilyén et al., 2019], our results indicate that more low-rank quantum algorithms can be effectively "dequantised" into classical length-square sampling algorithms.

Cite as

Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao Wang. Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 47:1-47:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.ISAAC.2020.47,
  author =	{Chia, Nai-Hui and Gily\'{e}n, Andr\'{a}s and Lin, Han-Hsuan and Lloyd, Seth and Tang, Ewin and Wang, Chunhao},
  title =	{{Quantum-Inspired Algorithms for Solving Low-Rank Linear Equation Systems with Logarithmic Dependence on the Dimension}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{47:1--47:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.47},
  URN =		{urn:nbn:de:0030-drops-133916},
  doi =		{10.4230/LIPIcs.ISAAC.2020.47},
  annote =	{Keywords: sublinear algorithms, quantum-inspired, regression, importance sampling, quantum machine learning}
}
Document
Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming

Authors: Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Semidefinite programming (SDP) is a central topic in mathematical optimization with extensive studies on its efficient solvers. In this paper, we present a proof-of-principle sublinear-time algorithm for solving SDPs with low-rank constraints; specifically, given an SDP with m constraint matrices, each of dimension n and rank r, our algorithm can compute any entry and efficient descriptions of the spectral decomposition of the solution matrix. The algorithm runs in time O(m⋅poly(log n,r,1/ε)) given access to a sampling-based low-overhead data structure for the constraint matrices, where ε is the precision of the solution. In addition, we apply our algorithm to a quantum state learning task as an application. Technically, our approach aligns with 1) SDP solvers based on the matrix multiplicative weight (MMW) framework by Arora and Kale [TOC '12]; 2) sampling-based dequantizing framework pioneered by Tang [STOC '19]. In order to compute the matrix exponential required in the MMW framework, we introduce two new techniques that may be of independent interest: - Weighted sampling: assuming sampling access to each individual constraint matrix A₁,…,A_τ, we propose a procedure that gives a good approximation of A = A₁+⋯+A_τ. - Symmetric approximation: we propose a sampling procedure that gives the spectral decomposition of a low-rank Hermitian matrix A. To the best of our knowledge, this is the first sampling-based algorithm for spectral decomposition, as previous works only give singular values and vectors.

Cite as

Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang. Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.MFCS.2020.23,
  author =	{Chia, Nai-Hui and Li, Tongyang and Lin, Han-Hsuan and Wang, Chunhao},
  title =	{{Quantum-Inspired Sublinear Algorithm for Solving Low-Rank Semidefinite Programming}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.23},
  URN =		{urn:nbn:de:0030-drops-126919},
  doi =		{10.4230/LIPIcs.MFCS.2020.23},
  annote =	{Keywords: Spectral decomposition, Semi-definite programming, Quantum-inspired algorithm, Sublinear algorithm}
}
Document
On the Quantum Complexity of Closest Pair and Related Problems

Authors: Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
The closest pair problem is a fundamental problem of computational geometry: given a set of n points in a d-dimensional space, find a pair with the smallest distance. A classical algorithm taught in introductory courses solves this problem in O(n log n) time in constant dimensions (i.e., when d = O(1)). This paper asks and answers the question of the problem’s quantum time complexity. Specifically, we give an Õ(n^(2/3)) algorithm in constant dimensions, which is optimal up to a polylogarithmic factor by the lower bound on the quantum query complexity of element distinctness. The key to our algorithm is an efficient history-independent data structure that supports quantum interference. In polylog(n) dimensions, no known quantum algorithms perform better than brute force search, with a quadratic speedup provided by Grover’s algorithm. To give evidence that the quadratic speedup is nearly optimal, we initiate the study of quantum fine-grained complexity and introduce the Quantum Strong Exponential Time Hypothesis (QSETH), which is based on the assumption that Grover’s algorithm is optimal for CNF-SAT when the clause width is large. We show that the naïve Grover approach to closest pair in higher dimensions is optimal up to an n^o(1) factor unless QSETH is false. We also study the bichromatic closest pair problem and the orthogonal vectors problem, with broadly similar results.

Cite as

Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang. On the Quantum Complexity of Closest Pair and Related Problems. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 16:1-16:43, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2020.16,
  author =	{Aaronson, Scott and Chia, Nai-Hui and Lin, Han-Hsuan and Wang, Chunhao and Zhang, Ruizhe},
  title =	{{On the Quantum Complexity of Closest Pair and Related Problems}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{16:1--16:43},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.16},
  URN =		{urn:nbn:de:0030-drops-125681},
  doi =		{10.4230/LIPIcs.CCC.2020.16},
  annote =	{Keywords: Closest pair, Quantum computing, Quantum fine grained reduction, Quantum strong exponential time hypothesis, Fine grained complexity}
}
Document
Oracles with Costs

Authors: Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin

Published in: LIPIcs, Volume 44, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)


Abstract
While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. This model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grover's algorithm, that our algorithm is exactly optimal.

Cite as

Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin. Oracles with Costs. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kimmel_et_al:LIPIcs.TQC.2015.1,
  author =	{Kimmel, Shelby and Lin, Cedric Yen-Yu and Lin, Han-Hsuan},
  title =	{{Oracles with Costs}},
  booktitle =	{10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)},
  pages =	{1--26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-96-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{44},
  editor =	{Beigi, Salman and K\"{o}nig, Robert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2015.1},
  URN =		{urn:nbn:de:0030-drops-55459},
  doi =		{10.4230/LIPIcs.TQC.2015.1},
  annote =	{Keywords: Quantum Algorithms, Query Complexity, Amplitude Amplification}
}
Document
Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester

Authors: Cedric Yen-Yu Lin and Han-Hsuan Lin

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
Inspired by the Elitzur-Vaidman bomb testing problem [Elitzur/Vaidman 1993], we introduce a new query complexity model, which we call bomb query complexity B(f). We investigate its relationship with the usual quantum query complexity Q(f), and show that B(f)=Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Theta(sqrt(B(f))). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n^(1.5)) quantum query complexity, improving the best known algorithm of O(n^(1.5) * sqrt(log(n))) [Furrow, 2008]. Applying this method to the maximum bipartite matching problem gives an O(n^(1.75)) algorithm, improving the best known trivial O(n^2) upper bound.

Cite as

Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 537-566, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.CCC.2015.537,
  author =	{Lin, Cedric Yen-Yu and Lin, Han-Hsuan},
  title =	{{Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{537--566},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.537},
  URN =		{urn:nbn:de:0030-drops-50635},
  doi =		{10.4230/LIPIcs.CCC.2015.537},
  annote =	{Keywords: Quantum Algorithms, Query Complexity, Elitzur-Vaidman Bomb Tester, Adversary Method, Maximum Bipartite Matching}
}
  • Refine by Author
  • 7 Lin, Han-Hsuan
  • 4 Chia, Nai-Hui
  • 3 Wang, Chunhao
  • 2 Chung, Kai-Min
  • 2 Lin, Cedric Yen-Yu
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Large Language Models
  • 2 Quantum Algorithms
  • 2 Query Complexity
  • 1 Adversary Method
  • 1 Alternating automata
  • Show More...

  • Refine by Type
  • 11 document

  • Refine by Publication Year
  • 4 2024
  • 3 2020
  • 2 2015
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail