12 Search Results for "Mörtberg, Anders"


Document
The Functor of Points Approach to Schemes in Cubical Agda

Authors: Max Zeuner and Matthias Hutzler

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present a formalization of quasi-compact and quasi-separated schemes (qcqs-schemes) in the Cubical Agda proof assistant. We follow Grothendieck’s functor of points approach, which defines schemes, the quintessential notion of modern algebraic geometry, as certain well-behaved functors from commutative rings to sets. This approach is often regarded as conceptually simpler than the standard approach of defining schemes as locally ringed spaces, but to our knowledge it has not yet been adopted in formalizations of algebraic geometry. We build upon a previous formalization of the so-called Zariski lattice associated to a commutative ring in order to define the notion of compact open subfunctor. This allows for a concise definition of qcqs-schemes, streamlining the usual presentation as e.g. given in the standard textbook of Demazure and Gabriel. It also lets us obtain a fully constructive proof that compact open subfunctors of affine schemes are qcqs-schemes.

Cite as

Max Zeuner and Matthias Hutzler. The Functor of Points Approach to Schemes in Cubical Agda. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zeuner_et_al:LIPIcs.ITP.2024.38,
  author =	{Zeuner, Max and Hutzler, Matthias},
  title =	{{The Functor of Points Approach to Schemes in Cubical Agda}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.38},
  URN =		{urn:nbn:de:0030-drops-207667},
  doi =		{10.4230/LIPIcs.ITP.2024.38},
  annote =	{Keywords: Schemes, Algebraic Geometry, Category Theory, Cubical Agda, Homotopy Type Theory and Univalent Foundations, Constructive Mathematics}
}
Document
Classification of Covering Spaces and Canonical Change of Basepoint

Authors: Jelle Wemmenhove, Cosmin Manea, and Jim Portegies

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Using the language of homotopy type theory (HoTT), we 1) prove a synthetic version of the classification theorem for covering spaces, and 2) explore the existence of canonical change-of-basepoint isomorphisms between homotopy groups. There is some freedom in choosing how to translate concepts from classical algebraic topology into HoTT. The final translations we ended up with are easier to work with than the ones we started with. We discuss some earlier attempts to shed light on this translation process. The proofs are mechanized using the Coq proof assistant and closely follow classical treatments like those by Hatcher [Allen Hatcher, 2002].

Cite as

Jelle Wemmenhove, Cosmin Manea, and Jim Portegies. Classification of Covering Spaces and Canonical Change of Basepoint. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wemmenhove_et_al:LIPIcs.TYPES.2023.1,
  author =	{Wemmenhove, Jelle and Manea, Cosmin and Portegies, Jim},
  title =	{{Classification of Covering Spaces and Canonical Change of Basepoint}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.1},
  URN =		{urn:nbn:de:0030-drops-204795},
  doi =		{10.4230/LIPIcs.TYPES.2023.1},
  annote =	{Keywords: Synthetic Homotopy Theory, Homotopy Type Theory, Covering Spaces, Change-of-Basepoint Isomorphism}
}
Document
Automating Boundary Filling in Cubical Agda

Authors: Maximilian Doré, Evan Cavallo, and Anders Mörtberg

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
When working in a proof assistant, automation is key to discharging routine proof goals such as equations between algebraic expressions. Homotopy Type Theory allows the user to reason about higher structures, such as topological spaces, using higher inductive types (HITs) and univalence. Cubical Agda is an extension of Agda with computational support for HITs and univalence. A difficulty when working in Cubical Agda is dealing with the complex combinatorics of higher structures, an infinite-dimensional generalisation of equational reasoning. To solve these higher-dimensional equations consists in constructing cubes with specified boundaries. We develop a simplified cubical language in which we isolate and study two automation problems: contortion solving, where we attempt to "contort" a cube to fit a given boundary, and the more general Kan solving, where we search for solutions that involve pasting multiple cubes together. Both problems are difficult in the general case - Kan solving is even undecidable - so we focus on heuristics that perform well on practical examples. We provide a solver for the contortion problem using a reformulation of contortions in terms of poset maps, while we solve Kan problems using constraint satisfaction programming. We have implemented our algorithms in an experimental Haskell solver that can be used to automatically solve goals presented by Cubical Agda. We illustrate this with a case study establishing the Eckmann-Hilton theorem using our solver, as well as various benchmarks - providing the ground for further study of proof automation in cubical type theories.

Cite as

Maximilian Doré, Evan Cavallo, and Anders Mörtberg. Automating Boundary Filling in Cubical Agda. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dore_et_al:LIPIcs.FSCD.2024.22,
  author =	{Dor\'{e}, Maximilian and Cavallo, Evan and M\"{o}rtberg, Anders},
  title =	{{Automating Boundary Filling in Cubical Agda}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.22},
  URN =		{urn:nbn:de:0030-drops-203514},
  doi =		{10.4230/LIPIcs.FSCD.2024.22},
  annote =	{Keywords: Cubical Agda, Automated Reasoning, Constraint Satisfaction Programming}
}
Document
Delooping Generated Groups in Homotopy Type Theory

Authors: Camil Champin, Samuel Mimram, and Émile Oleon

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Homotopy type theory is a logical setting based on Martin-Löf type theory in which one can perform geometric constructions and proofs in a synthetic way. Namely, types can be interpreted as spaces (up to continuous deformation) and proofs as homotopy invariant constructions. In this context, loop spaces of pointed connected groupoids provide a natural representation of groups, and any group can be obtained as the loop space of such a type, which is then called a delooping of the group. There are two main methods to construct the delooping of an arbitrary group G. The first one consists in describing it as a pointed higher inductive type, whereas the second one consists in taking the connected component of the principal G-torsor in the type of sets equipped with an action of G. We show here that, when a presentation is known for the group, simpler variants of those constructions can be used to build deloopings. The resulting types are more amenable to computations and lead to simpler meta-theoretic reasoning. We also investigate, in this context, an abstract construction for the Cayley graph of a generated group and show that it encodes the relations of the group. Most of the developments performed in the article have been formalized using the cubical version of the Agda proof assistant.

Cite as

Camil Champin, Samuel Mimram, and Émile Oleon. Delooping Generated Groups in Homotopy Type Theory. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 6:1-6:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{champin_et_al:LIPIcs.FSCD.2024.6,
  author =	{Champin, Camil and Mimram, Samuel and Oleon, \'{E}mile},
  title =	{{Delooping Generated Groups in Homotopy Type Theory}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{6:1--6:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.6},
  URN =		{urn:nbn:de:0030-drops-203356},
  doi =		{10.4230/LIPIcs.FSCD.2024.6},
  annote =	{Keywords: homotopy type theory, delooping, group, generator, Cayley graph}
}
Document
Towards Formally Specifying and Verifying Smart Contract Upgrades in Coq

Authors: Derek Sorensen

Published in: OASIcs, Volume 118, 5th International Workshop on Formal Methods for Blockchains (FMBC 2024)


Abstract
Smart contract upgrades are costly from a verification perspective and can be a meaningful source of vulnerabilities when done incorrectly. Unfortunately, there is no established, formal framework through which one can reason about contracts as they undergo upgrades, though much work has been done to verify standalone smart contracts. Instead, one must repeat the full verification process for each contract upgrade, something which relies heavily on fallible intuition, can lead to unexpected vulnerabilities, and drives up the cost of formally verifying smart contracts. We propose a formal framework for contract upgrades in ConCert, a Coq-based smart contract verification tool. Central to this framework is our notion of a contract morphism, a theoretical tool which we introduce to formally encode structural relationships between smart contracts, and with which we can formally specify and verify an upgraded contract relative to its previous versions. We argue that ours is a natural framework for specifying and verifying contract upgrades, and hope to offer a first step towards rigorous, efficient specification and verification of contract upgrades.

Cite as

Derek Sorensen. Towards Formally Specifying and Verifying Smart Contract Upgrades in Coq. In 5th International Workshop on Formal Methods for Blockchains (FMBC 2024). Open Access Series in Informatics (OASIcs), Volume 118, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sorensen:OASIcs.FMBC.2024.7,
  author =	{Sorensen, Derek},
  title =	{{Towards Formally Specifying and Verifying Smart Contract Upgrades in Coq}},
  booktitle =	{5th International Workshop on Formal Methods for Blockchains (FMBC 2024)},
  pages =	{7:1--7:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-317-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{118},
  editor =	{Bernardo, Bruno and Marmsoler, Diego},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2024.7},
  URN =		{urn:nbn:de:0030-drops-198728},
  doi =		{10.4230/OASIcs.FMBC.2024.7},
  annote =	{Keywords: smart contract verification, formal methods, interactive theorem prover, smart contract upgrades}
}
Document
A Univalent Formalization of Constructive Affine Schemes

Authors: Max Zeuner and Anders Mörtberg

Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)


Abstract
We present a formalization of constructive affine schemes in the Cubical Agda proof assistant. This development is not only fully constructive and predicative, it also makes crucial use of univalence. By now schemes have been formalized in various proof assistants. However, most existing formalizations follow the inherently non-constructive approach of Hartshorne’s classic "Algebraic Geometry" textbook, for which the construction of the so-called structure sheaf is rather straightforwardly formalizable and works the same with or without univalence. We follow an alternative approach that uses a point-free description of the constructive counterpart of the Zariski spectrum called the Zariski lattice and proceeds by defining the structure sheaf on formal basic opens and then lift it to the whole lattice. This general strategy is used in a plethora of textbooks, but formalizing it has proved tricky. The main result of this paper is that with the help of the univalence principle we can make this "lift from basis" strategy formal and obtain a fully formalized account of constructive affine schemes.

Cite as

Max Zeuner and Anders Mörtberg. A Univalent Formalization of Constructive Affine Schemes. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 14:1-14:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zeuner_et_al:LIPIcs.TYPES.2022.14,
  author =	{Zeuner, Max and M\"{o}rtberg, Anders},
  title =	{{A Univalent Formalization of Constructive Affine Schemes}},
  booktitle =	{28th International Conference on Types for Proofs and Programs (TYPES 2022)},
  pages =	{14:1--14:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-285-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{269},
  editor =	{Kesner, Delia and P\'{e}drot, Pierre-Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.14},
  URN =		{urn:nbn:de:0030-drops-184574},
  doi =		{10.4230/LIPIcs.TYPES.2022.14},
  annote =	{Keywords: Affine Schemes, Homotopy Type Theory and Univalent Foundations, Cubical Agda, Constructive Mathematics}
}
Document
Synthetic Integral Cohomology in Cubical Agda

Authors: Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
This paper discusses the formalization of synthetic cohomology theory in a cubical extension of Agda which natively supports univalence and higher inductive types. This enables significant simplifications of many proofs from Homotopy Type Theory and Univalent Foundations as steps that used to require long calculations now hold simply by computation. To this end, we give a new definition of the group structure for cohomology with ℤ-coefficients, optimized for efficient computations. We also invent an optimized definition of the cup product which allows us to give the first complete formalization of the axioms needed to turn the integral cohomology groups into a graded commutative ring. Using this, we characterize the cohomology groups of the spheres, torus, Klein bottle and real/complex projective planes. As all proofs are constructive we can then use Cubical Agda to distinguish between spaces by computation.

Cite as

Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg. Synthetic Integral Cohomology in Cubical Agda. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{brunerie_et_al:LIPIcs.CSL.2022.11,
  author =	{Brunerie, Guillaume and Ljungstr\"{o}m, Axel and M\"{o}rtberg, Anders},
  title =	{{Synthetic Integral Cohomology in Cubical Agda}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.11},
  URN =		{urn:nbn:de:0030-drops-157310},
  doi =		{10.4230/LIPIcs.CSL.2022.11},
  annote =	{Keywords: Synthetic Homotopy Theory, Cohomology Theory, Cubical Agda}
}
Document
Higher Inductive Type Eliminators Without Paths

Authors: Nils Anders Danielsson

Published in: LIPIcs, Volume 175, 25th International Conference on Types for Proofs and Programs (TYPES 2019)


Abstract
Cubical Agda has support for higher inductive types. Paths are integral to the working of this feature. However, there are other notions of equality. For instance, Cubical Agda comes with an identity type family for which the J rule computes in the usual way when applied to the canonical proof of reflexivity, whereas typical implementations of the J rule for paths do not. This text shows how one can use some of the higher inductive types definable in Cubical Agda with arbitrary notions of equality satisfying certain axioms. The method works for several examples taken from the HoTT book, including the interval, the circle, suspensions, pushouts, the propositional truncation, a general truncation operator, and set quotients.

Cite as

Nils Anders Danielsson. Higher Inductive Type Eliminators Without Paths. In 25th International Conference on Types for Proofs and Programs (TYPES 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 175, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{danielsson:LIPIcs.TYPES.2019.10,
  author =	{Danielsson, Nils Anders},
  title =	{{Higher Inductive Type Eliminators Without Paths}},
  booktitle =	{25th International Conference on Types for Proofs and Programs (TYPES 2019)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-158-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{175},
  editor =	{Bezem, Marc and Mahboubi, Assia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2019.10},
  URN =		{urn:nbn:de:0030-drops-130749},
  doi =		{10.4230/LIPIcs.TYPES.2019.10},
  annote =	{Keywords: Cubical Agda, higher inductive types}
}
Document
Internal Parametricity for Cubical Type Theory

Authors: Evan Cavallo and Robert Harper

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, and we give an account of the identity extension lemma for internal parametricity.

Cite as

Evan Cavallo and Robert Harper. Internal Parametricity for Cubical Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.13,
  author =	{Cavallo, Evan and Harper, Robert},
  title =	{{Internal Parametricity for Cubical Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.13},
  URN =		{urn:nbn:de:0030-drops-116564},
  doi =		{10.4230/LIPIcs.CSL.2020.13},
  annote =	{Keywords: parametricity, cubical type theory, higher inductive types}
}
Document
Unifying Cubical Models of Univalent Type Theory

Authors: Evan Cavallo, Anders Mörtberg, and Andrew W Swan

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure.

Cite as

Evan Cavallo, Anders Mörtberg, and Andrew W Swan. Unifying Cubical Models of Univalent Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.14,
  author =	{Cavallo, Evan and M\"{o}rtberg, Anders and Swan, Andrew W},
  title =	{{Unifying Cubical Models of Univalent Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.14},
  URN =		{urn:nbn:de:0030-drops-116578},
  doi =		{10.4230/LIPIcs.CSL.2020.14},
  annote =	{Keywords: Cubical Set Models, Cubical Type Theory, Homotopy Type Theory, Univalent Foundations}
}
Document
Cubical Syntax for Reflection-Free Extensional Equality

Authors: Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We contribute XTT, a cubical reconstruction of Observational Type Theory [Altenkirch et al., 2007] which extends Martin-Löf’s intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel extension of the logical families or categorical gluing argument inspired by Coquand and Shulman [Coquand, 2018; Shulman, 2015]: every closed element of boolean type is derivably equal to either true or false.

Cite as

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31,
  author =	{Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel},
  title =	{{Cubical Syntax for Reflection-Free Extensional Equality}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31},
  URN =		{urn:nbn:de:0030-drops-105387},
  doi =		{10.4230/LIPIcs.FSCD.2019.31},
  annote =	{Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity}
}
Document
Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom

Authors: Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg

Published in: LIPIcs, Volume 69, 21st International Conference on Types for Proofs and Programs (TYPES 2015) (2018)


Abstract
This paper presents a type theory in which it is possible to directly manipulate $n$-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in a cubical set model. This enables new ways to reason about identity types, for instance, function extensionality is directly provable in the system. Further, Voevodsky's univalence axiom is provable in this system. We also explain an extension with some higher inductive types like the circle and propositional truncation. Finally we provide semantics for this cubical type theory in a constructive meta-theory.

Cite as

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 69, pp. 5:1-5:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.TYPES.2015.5,
  author =	{Cohen, Cyril and Coquand, Thierry and Huber, Simon and M\"{o}rtberg, Anders},
  title =	{{Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom}},
  booktitle =	{21st International Conference on Types for Proofs and Programs (TYPES 2015)},
  pages =	{5:1--5:34},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-030-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{69},
  editor =	{Uustalu, Tarmo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2015.5},
  URN =		{urn:nbn:de:0030-drops-84754},
  doi =		{10.4230/LIPIcs.TYPES.2015.5},
  annote =	{Keywords: univalence axiom, dependent type theory, cubical sets}
}
  • Refine by Author
  • 5 Mörtberg, Anders
  • 3 Cavallo, Evan
  • 2 Zeuner, Max
  • 1 Angiuli, Carlo
  • 1 Brunerie, Guillaume
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 5 Cubical Agda
  • 2 Constructive Mathematics
  • 2 Homotopy Type Theory
  • 2 Homotopy Type Theory and Univalent Foundations
  • 2 Synthetic Homotopy Theory
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 5 2024
  • 3 2020
  • 1 2018
  • 1 2019
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail