Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)
Amin Coja-Oghlan, Jane Gao, Max Hahn-Klimroth, Joon Lee, Noela Müller, and Maurice Rolvien. The Full Rank Condition for Sparse Random Matrices. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{cojaoghlan_et_al:LIPIcs.APPROX/RANDOM.2023.54, author = {Coja-Oghlan, Amin and Gao, Jane and Hahn-Klimroth, Max and Lee, Joon and M\"{u}ller, Noela and Rolvien, Maurice}, title = {{The Full Rank Condition for Sparse Random Matrices}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {54:1--54:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.54}, URN = {urn:nbn:de:0030-drops-188792}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.54}, annote = {Keywords: random matrices, rank, finite fields, rationals} }
Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)
Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, Noela Müller, Konstantinos Panagiotou, and Matija Pasch. Inference and Mutual Information on Random Factor Graphs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{cojaoghlan_et_al:LIPIcs.STACS.2021.24, author = {Coja-Oghlan, Amin and Hahn-Klimroth, Max and Loick, Philipp and M\"{u}ller, Noela and Panagiotou, Konstantinos and Pasch, Matija}, title = {{Inference and Mutual Information on Random Factor Graphs}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {24:1--24:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.24}, URN = {urn:nbn:de:0030-drops-136692}, doi = {10.4230/LIPIcs.STACS.2021.24}, annote = {Keywords: Information theory, random factor graphs, inference problems, phase transitions} }
Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)
Michael Fuchs, Noela S. Müller, and Henning Sulzbach. Refined Asymptotics for the Number of Leaves of Random Point Quadtrees. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 23:1-23:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{fuchs_et_al:LIPIcs.AofA.2018.23, author = {Fuchs, Michael and M\"{u}ller, Noela S. and Sulzbach, Henning}, title = {{Refined Asymptotics for the Number of Leaves of Random Point Quadtrees}}, booktitle = {29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)}, pages = {23:1--23:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-078-1}, ISSN = {1868-8969}, year = {2018}, volume = {110}, editor = {Fill, James Allen and Ward, Mark Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.23}, URN = {urn:nbn:de:0030-drops-89165}, doi = {10.4230/LIPIcs.AofA.2018.23}, annote = {Keywords: Quadtree, number of leaves, phase change, stochastic fixed-point equation, central limit theorem, positivity of variance, contraction method} }
Feedback for Dagstuhl Publishing