5 Search Results for "Madan, Vivek"


Document
RANDOM
Sparse High Dimensional Expanders via Local Lifts

Authors: Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
High dimensional expanders (HDXs) are a hypergraph generalization of expander graphs. They are extensively studied in the math and TCS communities due to their many applications. Like expander graphs, HDXs are especially interesting for applications when they are bounded degree, namely, if the number of edges adjacent to every vertex is bounded. However, only a handful of constructions are known to have this property, all of which rely on algebraic techniques. In particular, no random or combinatorial construction of bounded degree high dimensional expanders is known. As a result, our understanding of these objects is limited. The degree of an i-face in an HDX is the number of (i+1)-faces that contain it. In this work we construct complexes whose higher dimensional faces have bounded degree. This is done by giving an elementary and deterministic algorithm that takes as input a regular k-dimensional HDX X and outputs another regular k-dimensional HDX X̂ with twice as many vertices. While the degree of vertices in X̂ grows, the degree of the (k-1)-faces in X̂ stays the same. As a result, we obtain a new "algebra-free" construction of HDXs whose (k-1)-face degree is bounded. Our construction algorithm is based on a simple and natural generalization of the expander graph construction by Bilu and Linial [Yehonatan Bilu and Nathan Linial, 2006], which build expander graphs using lifts coming from edge signings. Our construction is based on local lifts of high dimensional expanders, where a local lift is a new complex whose top-level links are lifts of the links of the original complex. We demonstrate that a local lift of an HDX is also an HDX in many cases. In addition, combining local lifts with existing bounded degree constructions creates new families of bounded degree HDXs with significantly different links than before. For every large enough D, we use this technique to construct families of bounded degree HDXs with links that have diameter ≥ D.

Cite as

Inbar Ben Yaacov, Yotam Dikstein, and Gal Maor. Sparse High Dimensional Expanders via Local Lifts. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 68:1-68:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{benyaacov_et_al:LIPIcs.APPROX/RANDOM.2024.68,
  author =	{Ben Yaacov, Inbar and Dikstein, Yotam and Maor, Gal},
  title =	{{Sparse High Dimensional Expanders via Local Lifts}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{68:1--68:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.68},
  URN =		{urn:nbn:de:0030-drops-210612},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.68},
  annote =	{Keywords: High Dimensional Expanders, HDX, Spectral Expansion, Lifts, Covers, Explicit Constructions, Randomized Constructions, Deterministic Constructions}
}
Document
Multiway Cuts with a Choice of Representatives

Authors: Kristóf Bérczi, Tamás Király, and Daniel P. Szabo

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Multiway Cut problem, we are given an undirected graph with nonnegative edge weights and a subset of k terminals, and the goal is to determine a set of edges of minimum total weight whose removal disconnects each terminal from the rest. The problem is APX-hard for k ≥ 3, and an extensive line of research has concentrated on closing the gap between the best upper and lower bounds for approximability and inapproximability, respectively. In this paper, we study several generalizations of Multiway Cut where the terminals can be chosen as representatives from sets of candidates T₁,…,T_q. In this setting, one is allowed to choose these representatives so that the minimum-weight cut separating these sets via their representatives is as small as possible. We distinguish different cases depending on (A) whether the representative of a candidate set has to be separated from the other candidate sets completely or only from the representatives, and (B) whether there is a single representative for each candidate set or the choice of representative is independent for each pair of candidate sets. For fixed q, we give approximation algorithms for each of these problems that match the best known approximation guarantee for Multiway Cut. Our technical contribution is a new extension of the CKR relaxation that preserves approximation guarantees. For general q, we show o(log q)-inapproximability for all cases where the choice of representatives may depend on the pair of candidate sets, as well as for the case where the goal is to separate a fixed node from a single representative from each candidate set. As a positive result, we give a 2-approximation algorithm for the case where we need to choose a single representative from each candidate set. This is a generalization of the (2-2/k)-approximation for k-Cut, and we can solve it by relating the tree case to optimization over a gammoid.

Cite as

Kristóf Bérczi, Tamás Király, and Daniel P. Szabo. Multiway Cuts with a Choice of Representatives. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.MFCS.2024.25,
  author =	{B\'{e}rczi, Krist\'{o}f and Kir\'{a}ly, Tam\'{a}s and Szabo, Daniel P.},
  title =	{{Multiway Cuts with a Choice of Representatives}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-205813},
  doi =		{10.4230/LIPIcs.MFCS.2024.25},
  annote =	{Keywords: Approximation algorithms, Multiway cut, CKR relaxation, Steiner multicut}
}
Document
Track A: Algorithms, Complexity and Games
Lower Bounds on 0-Extension with Steiner Nodes

Authors: Yu Chen and Zihan Tan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the 0-Extension problem, we are given an edge-weighted graph G = (V,E,c), a set T ⊆ V of its vertices called terminals, and a semi-metric D over T, and the goal is to find an assignment f of each non-terminal vertex to a terminal, minimizing the sum, over all edges (u,v) ∈ E, the product of the edge weight c(u,v) and the distance D(f(u),f(v)) between the terminals that u,v are mapped to. Current best approximation algorithms on 0-Extension are based on rounding a linear programming relaxation called the semi-metric LP relaxation. The integrality gap of this LP, is upper bounded by O(log|T|/log log|T|) and lower bounded by Ω((log|T|)^{2/3}), has been shown to be closely related to the quality of cut and flow vertex sparsifiers. We study a variant of the 0-Extension problem where Steiner vertices are allowed. Specifically, we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following from previous work, this new integrality gap turns out to be closely related to the quality achievable by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. We show that the new integrality gap stays superconstant Ω(log log |T|) even if we allow a super-linear O(|T|log^{1-ε}|T|) number of Steiner nodes.

Cite as

Yu Chen and Zihan Tan. Lower Bounds on 0-Extension with Steiner Nodes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 47:1-47:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.47,
  author =	{Chen, Yu and Tan, Zihan},
  title =	{{Lower Bounds on 0-Extension with Steiner Nodes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{47:1--47:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.47},
  URN =		{urn:nbn:de:0030-drops-201905},
  doi =		{10.4230/LIPIcs.ICALP.2024.47},
  annote =	{Keywords: Graph Algorithms, Zero Extension, Integrality Gap}
}
Document
Spectrally Robust Graph Isomorphism

Authors: Alexandra Kolla, Ioannis Koutis, Vivek Madan, and Ali Kemal Sinop

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We initiate the study of spectral generalizations of the graph isomorphism problem. b) The Spectral Graph Dominance (SGD) problem: On input of two graphs G and H does there exist a permutation pi such that G preceq pi(H)? c) The Spectrally Robust Graph Isomorphism (kappa-SRGI) problem: On input of two graphs G and H, find the smallest number kappa over all permutations pi such that pi(H) preceq G preceq kappa c pi(H) for some c. SRGI is a natural formulation of the network alignment problem that has various applications, most notably in computational biology. G preceq c H means that for all vectors x we have x^T L_G x <= c x^T L_H x, where L_G is the Laplacian G. We prove NP-hardness for SGD. We also present a kappa^3-approximation algorithm for SRGI for the case when both G and H are bounded-degree trees. The algorithm runs in polynomial time when kappa is a constant.

Cite as

Alexandra Kolla, Ioannis Koutis, Vivek Madan, and Ali Kemal Sinop. Spectrally Robust Graph Isomorphism. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 84:1-84:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kolla_et_al:LIPIcs.ICALP.2018.84,
  author =	{Kolla, Alexandra and Koutis, Ioannis and Madan, Vivek and Sinop, Ali Kemal},
  title =	{{Spectrally Robust Graph Isomorphism}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{84:1--84:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.84},
  URN =		{urn:nbn:de:0030-drops-90887},
  doi =		{10.4230/LIPIcs.ICALP.2018.84},
  annote =	{Keywords: Network Alignment, Graph Isomorphism, Graph Similarity}
}
Document
On the Expansion of Group-Based Lifts

Authors: Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek Madan

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
A k-lift of an n-vertex base graph G is a graph H on nxk vertices, where each vertex v of G is replaced by k vertices v_1,...,v_k and each edge uv in G is replaced by a matching representing a bijection pi_{uv} so that the edges of H are of the form (u_i,v_{pi_{uv}(i)}). Lifts have been investigated as a means to efficiently construct expanders. In this work, we study lifts obtained from groups and group actions. We derive the spectrum of such lifts via the representation theory principles of the underlying group. Our main results are: 1. A uniform random lift by a cyclic group of order k of any n-vertex d-regular base graph G, with the nontrivial eigenvalues of the adjacency matrix of G bounded by lambda in magnitude, has the new nontrivial eigenvalues bounded by lambda+O(sqrt{d}) in magnitude with probability 1-ke^{-Omega(n/d^2)}. The probability bounds as well as the dependency on lambda are almost optimal. As a special case, we obtain that there is a constant c_1 such that for every k<=2^{c_1n/d^2}, there exists a lift H of every Ramanujan graph by a cyclic group of order k such that H is almost Ramanujan (nontrivial eigenvalues of the adjacency matrix at most O(sqrt{d}) in magnitude). We also show how this result leads to a quasi-polynomial time deterministic algorithm to construct almost Ramanujan expanders. 2. There is a constant c_2 such that for every k>=2^{c_2nd}, there does not exist an abelian k-lift H of any n-vertex d-regular base graph such that H is almost Ramanujan. This can be viewed as an analogue of the well-known no-expansion result for constant degree abelian Cayley graphs. Suppose k_0 is the order of the largest abelian group that produces expanding lifts. Our two results highlight lower and upper bounds on k_0 that are tight upto a factor of d^3 in the exponent, thus suggesting a threshold phenomenon.

Cite as

Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek Madan. On the Expansion of Group-Based Lifts. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 24:1-24:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.APPROX-RANDOM.2017.24,
  author =	{Agarwal, Naman and Chandrasekaran, Karthekeyan and Kolla, Alexandra and Madan, Vivek},
  title =	{{On the Expansion of Group-Based Lifts}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{24:1--24:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.24},
  URN =		{urn:nbn:de:0030-drops-75739},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.24},
  annote =	{Keywords: Expanders, Lifts, Spectral Graph Theory}
}
  • Refine by Author
  • 2 Kolla, Alexandra
  • 2 Madan, Vivek
  • 1 Agarwal, Naman
  • 1 Ben Yaacov, Inbar
  • 1 Bérczi, Kristóf
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Expander graphs and randomness extractors
  • 1 Theory of computation → Facility location and clustering
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Linear programming
  • Show More...

  • Refine by Keyword
  • 2 Lifts
  • 1 Approximation algorithms
  • 1 CKR relaxation
  • 1 Covers
  • 1 Deterministic Constructions
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2024
  • 1 2017
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail