34 Search Results for "Marchetti-Spaccamela, Alberto"


Volume

OASIcs, Volume 75

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)

ATMOS 2019, September 12-13, 2019, Munich, Germany

Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela

Document
Invertible Bloom Lookup Tables with Less Memory and Randomness

Authors: Nils Fleischhacker, Kasper Green Larsen, Maciej Obremski, and Mark Simkin

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this work we study Invertible Bloom Lookup Tables (IBLTs) with small failure probabilities. IBLTs are highly versatile data structures that have found applications in set reconciliation protocols, error-correcting codes, and even the design of advanced cryptographic primitives. For storing n elements and ensuring correctness with probability at least 1 - δ, existing IBLT constructions require Ω(n((log(1/δ))/(log n))+1)) space and they crucially rely on fully random hash functions. We present new constructions of IBLTs that are simultaneously more space efficient and require less randomness. For storing n elements with a failure probability of at most δ, our data structure only requires O{n + log(1/δ)log log(1/δ)} space and O{log(log(n)/δ)}-wise independent hash functions. As a key technical ingredient we show that hashing n keys with any k-wise independent hash function h:U → [Cn] for some sufficiently large constant C guarantees with probability 1 - 2^{-Ω(k)} that at least n/2 keys will have a unique hash value. Proving this is non-trivial as k approaches n. We believe that the techniques used to prove this statement may be of independent interest. We apply our new IBLTs to the encrypted compression problem, recently studied by Fleischhacker, Larsen, Simkin (Eurocrypt 2023). We extend their approach to work for a more general class of encryption schemes and using our new IBLT we achieve an asymptotically better compression rate.

Cite as

Nils Fleischhacker, Kasper Green Larsen, Maciej Obremski, and Mark Simkin. Invertible Bloom Lookup Tables with Less Memory and Randomness. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 54:1-54:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fleischhacker_et_al:LIPIcs.ESA.2024.54,
  author =	{Fleischhacker, Nils and Larsen, Kasper Green and Obremski, Maciej and Simkin, Mark},
  title =	{{Invertible Bloom Lookup Tables with Less Memory and Randomness}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{54:1--54:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.54},
  URN =		{urn:nbn:de:0030-drops-211252},
  doi =		{10.4230/LIPIcs.ESA.2024.54},
  annote =	{Keywords: Invertible Bloom Lookup Tables}
}
Document
Random-Order Online Independent Set of Intervals and Hyperrectangles

Authors: Mohit Garg, Debajyoti Kar, and Arindam Khan

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Maximum Independent Set of Hyperrectangles problem, we are given a set of n (possibly overlapping) d-dimensional axis-aligned hyperrectangles, and the goal is to find a subset of non-overlapping hyperrectangles of maximum cardinality. For d = 1, this corresponds to the classical Interval Scheduling problem, where a simple greedy algorithm returns an optimal solution. In the offline setting, for d-dimensional hyperrectangles, polynomial time (log n)^{O(d)}-approximation algorithms are known [Chalermsook and Chuzhoy, 2009]. However, the problem becomes notably challenging in the online setting, where the input objects (hyperrectangles) appear one by one in an adversarial order, and on the arrival of an object, the algorithm needs to make an immediate and irrevocable decision whether or not to select the object while maintaining the feasibility. Even for interval scheduling, an Ω(n) lower bound is known on the competitive ratio. To circumvent these negative results, in this work, we study the online maximum independent set of axis-aligned hyperrectangles in the random-order arrival model, where the adversary specifies the set of input objects which then arrive in a uniformly random order. Starting from the prototypical secretary problem, the random-order model has received significant attention to study algorithms beyond the worst-case competitive analysis (see the survey by Gupta and Singla [Anupam Gupta and Sahil Singla, 2020]). Surprisingly, we show that the problem in the random-order model almost matches the best-known offline approximation guarantees, up to polylogarithmic factors. In particular, we give a simple (log n)^{O(d)}-competitive algorithm for d-dimensional hyperrectangles in this model, which runs in O_d̃(n) time. Our approach also yields (log n)^{O(d)}-competitive algorithms in the random-order model for more general objects such as d-dimensional fat objects and ellipsoids. Furthermore, all our competitiveness guarantees hold with high probability, and not just in expectation.

Cite as

Mohit Garg, Debajyoti Kar, and Arindam Khan. Random-Order Online Independent Set of Intervals and Hyperrectangles. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 58:1-58:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ESA.2024.58,
  author =	{Garg, Mohit and Kar, Debajyoti and Khan, Arindam},
  title =	{{Random-Order Online Independent Set of Intervals and Hyperrectangles}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{58:1--58:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.58},
  URN =		{urn:nbn:de:0030-drops-211298},
  doi =		{10.4230/LIPIcs.ESA.2024.58},
  annote =	{Keywords: Online Algorithms, Random-Order Model, Maximum Independent Set of Rectangles, Hyperrectangles, Fat Objects, Interval Scheduling}
}
Document
APPROX
Online Time-Windows TSP with Predictions

Authors: Shuchi Chawla and Dimitris Christou

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In the Time-Windows TSP (TW-TSP) we are given requests at different locations on a network; each request is endowed with a reward and an interval of time; the goal is to find a tour that visits as much reward as possible during the corresponding time window. For the online version of this problem, where each request is revealed at the start of its time window, no finite competitive ratio can be obtained. We consider a version of the problem where the algorithm is presented with predictions of where and when the online requests will appear, without any knowledge of the quality of this side information. Vehicle routing problems such as the TW-TSP can be very sensitive to errors or changes in the input due to the hard time-window constraints, and it is unclear whether imperfect predictions can be used to obtain a finite competitive ratio. We show that good performance can be achieved by explicitly building slack into the solution. Our main result is an online algorithm that achieves a competitive ratio logarithmic in the diameter of the underlying network, matching the performance of the best offline algorithm to within factors that depend on the quality of the provided predictions. The competitive ratio degrades smoothly as a function of the quality and we show that this dependence is tight within constant factors.

Cite as

Shuchi Chawla and Dimitris Christou. Online Time-Windows TSP with Predictions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chawla_et_al:LIPIcs.APPROX/RANDOM.2024.2,
  author =	{Chawla, Shuchi and Christou, Dimitris},
  title =	{{Online Time-Windows TSP with Predictions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.2},
  URN =		{urn:nbn:de:0030-drops-209954},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.2},
  annote =	{Keywords: Travelling Salesman Problem, Predictions, Learning-Augmented Algorithms, Approximation}
}
Document
APPROX
Speed-Robust Scheduling Revisited

Authors: Josef Minařík and Jiří Sgall

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Speed-robust scheduling is the following two-stage problem of scheduling n jobs on m uniformly related machines. In the first stage, the algorithm receives the value of m and the processing times of n jobs; it has to partition the jobs into b groups called bags. In the second stage, the machine speeds are revealed and the bags are assigned to the machines, i.e., the algorithm produces a schedule where all the jobs in the same bag are assigned to the same machine. The objective is to minimize the makespan (the length of the schedule). The algorithm is compared to the optimal schedule and it is called ρ-robust, if its makespan is always at most ρ times the optimal one. Our main result is an improved bound for equal-size jobs for b = m. We give an upper bound of 1.6. This improves previous bound of 1.8 and it is almost tight in the light of previous lower bound of 1.58. Second, for infinitesimally small jobs, we give tight upper and lower bounds for the case when b ≥ m. This generalizes and simplifies the previous bounds for b = m. Finally, we introduce a new special case with relatively small jobs for which we give an algorithm whose robustness is close to that of infinitesimal jobs and thus gives better than 2-robust for a large class of inputs.

Cite as

Josef Minařík and Jiří Sgall. Speed-Robust Scheduling Revisited. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{minarik_et_al:LIPIcs.APPROX/RANDOM.2024.8,
  author =	{Mina\v{r}{\'\i}k, Josef and Sgall, Ji\v{r}{\'\i}},
  title =	{{Speed-Robust Scheduling Revisited}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.8},
  URN =		{urn:nbn:de:0030-drops-210010},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.8},
  annote =	{Keywords: scheduling, approximation algorithms, makespan, uniform speeds}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
Streaming Zero-Knowledge Proofs

Authors: Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a massive stream of data to verify a computation that requires large space, by communicating with a powerful but untrusted prover. This work initiates the study of zero-knowledge proofs for data streams. We define the notion of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polynomial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central streaming problems such as index, point and range queries, median, frequency moments, and inner product. Our protocols are efficient in terms of time and space, as well as communication: the verifier algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random string of near-linear length, the remaining parameters are n^o(1). En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols, consisting of an algebraic streaming commitment protocol and a temporal commitment protocol. Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from average-case communication complexity.

Cite as

Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey. Streaming Zero-Knowledge Proofs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 2:1-2:66, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cormode_et_al:LIPIcs.CCC.2024.2,
  author =	{Cormode, Graham and Dall'Agnol, Marcel and Gur, Tom and Hickey, Chris},
  title =	{{Streaming Zero-Knowledge Proofs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{2:1--2:66},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.2},
  URN =		{urn:nbn:de:0030-drops-203988},
  doi =		{10.4230/LIPIcs.CCC.2024.2},
  annote =	{Keywords: Zero-knowledge proofs, streaming algorithms, computational complexity}
}
Document
IMELL Cut Elimination with Linear Overhead

Authors: Beniamino Accattoli and Claudio Sacerdoti Coen

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Recently, Accattoli introduced the Exponential Substitution Calculus (ESC) given by untyped proof terms for Intuitionistic Multiplicative Exponential Linear Logic (IMELL), endowed with rewriting rules at-a-distance for cut elimination. He also introduced a new cut elimination strategy, dubbed the good strategy, and showed that its number of steps is a time cost model with polynomial overhead for ESC/IMELL, and the first such one. Here, we refine Accattoli’s result by introducing an abstract machine for ESC and proving that it implements the good strategy and computes cut-free terms/proofs within a linear overhead.

Cite as

Beniamino Accattoli and Claudio Sacerdoti Coen. IMELL Cut Elimination with Linear Overhead. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.24,
  author =	{Accattoli, Beniamino and Sacerdoti Coen, Claudio},
  title =	{{IMELL Cut Elimination with Linear Overhead}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.24},
  URN =		{urn:nbn:de:0030-drops-203539},
  doi =		{10.4230/LIPIcs.FSCD.2024.24},
  annote =	{Keywords: Lambda calculus, linear logic, abstract machines}
}
Document
Reachability-Based Response-Time Analysis of Preemptive Tasks Under Global Scheduling

Authors: Pourya Gohari, Jeroen Voeten, and Mitra Nasri

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Global scheduling reduces the average response times as it can use the available computing cores more efficiently for scheduling ready tasks. However, this flexibility poses challenges in accurately quantifying interference scenarios, often resulting in either conservative response-time analyses or scalability issues. In this paper, we present a new response-time analysis for preemptive periodic tasks (or job sets) subject to release jitter under global job-level fixed-priority (JLFP) scheduling. Our analysis relies on the notion of schedule-abstraction graph (SAG), a reachability-based response-time analysis known for its potential accuracy and efficiency. Up to this point, SAG was limited to non-preemptive tasks due to the complexity of handling preemption when the number of preemptions and the moments they occur are not known beforehand. In this paper, we introduce the concept of time partitions and demonstrate how it facilitates the extension of SAG for preemptive tasks. Moreover, our paper provides the first response-time analysis for the global EDF(k) policy - a JLFP scheduling policy introduced in 2003 to address the Dhall’s effect. Our experiments show that our analysis is significantly more accurate compared to the state-of-the-art analyses. For example, we identify 12 times more schedulable task sets than existing tests for the global EDF policy (e.g., for systems with 6 to 16 tasks, 70% utilization, and 4 cores) with an average runtime of 30 minutes. We show that EDF(k) outperforms global RM and EDF by scheduling on average 24.9% more task sets (e.g., for systems with 2 to 10 cores and 70% utilization). Moreover, for the first time, we show that global JLFP scheduling policies (particularly, global EDF(k)) are able to schedule task sets that are not schedulable using well-known partitioning heuristics.

Cite as

Pourya Gohari, Jeroen Voeten, and Mitra Nasri. Reachability-Based Response-Time Analysis of Preemptive Tasks Under Global Scheduling. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gohari_et_al:LIPIcs.ECRTS.2024.3,
  author =	{Gohari, Pourya and Voeten, Jeroen and Nasri, Mitra},
  title =	{{Reachability-Based Response-Time Analysis of Preemptive Tasks Under Global Scheduling}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{3:1--3:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.3},
  URN =		{urn:nbn:de:0030-drops-203064},
  doi =		{10.4230/LIPIcs.ECRTS.2024.3},
  annote =	{Keywords: Response-time analysis, global scheduling, preemptive, job-level fixed-priority scheduling policy, multicore, schedule-abstraction graph}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximate Counting of Cycles

Authors: Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

Cite as

Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams. Fast Approximate Counting of Cycles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2024.37,
  author =	{Censor-Hillel, Keren and Even, Tomer and Vassilevska Williams, Virginia},
  title =	{{Fast Approximate Counting of Cycles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.37},
  URN =		{urn:nbn:de:0030-drops-201809},
  doi =		{10.4230/LIPIcs.ICALP.2024.37},
  annote =	{Keywords: Approximate triangle counting, Approximate cycle counting Fast matrix multiplication, Fast rectangular matrix multiplication}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Electrical Oblivious Routing on Expanders

Authors: Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we investigate the question of whether the electrical flow routing is a good oblivious routing scheme on an m-edge graph G = (V, E) that is a Φ-expander, i.e. where |∂ S| ≥ Φ ⋅ vol(S) for every S ⊆ V, vol(S) ≤ vol(V)/2. Beyond its simplicity and structural importance, this question is well-motivated by the current state-of-the-art of fast algorithms for 𝓁_∞ oblivious routings that reduce to the expander-case which is in turn solved by electrical flow routing. Our main result proves that the electrical routing is an O(Φ^{-1} log m)-competitive oblivious routing in the 𝓁₁- and 𝓁_∞-norms. We further observe that the oblivious routing is O(log² m)-competitive in the 𝓁₂-norm and, in fact, O(log m)-competitive if 𝓁₂-localization is O(log m) which is widely believed. Using these three upper bounds, we can smoothly interpolate to obtain upper bounds for every p ∈ [2, ∞] and q given by 1/p + 1/q = 1. Assuming 𝓁₂-localization in O(log m), we obtain that in 𝓁_p and 𝓁_q, the electrical oblivious routing is O(Φ^{-(1-2/p)}log m) competitive. Using the currently known result for 𝓁₂-localization, this ratio deteriorates by at most a sublogarithmic factor for every p, q ≠ 2. We complement our upper bounds with lower bounds that show that the electrical routing for any such p and q is Ω(Φ^{-(1-2/p)} log m)-competitive. This renders our results in 𝓁₁ and 𝓁_∞ unconditionally tight up to constants, and the result in any 𝓁_p- and 𝓁_q-norm to be tight in case of 𝓁₂-localization in O(log m).

Cite as

Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Optimal Electrical Oblivious Routing on Expanders. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 65:1-65:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{florescu_et_al:LIPIcs.ICALP.2024.65,
  author =	{Florescu, Cella and Kyng, Rasmus and Gutenberg, Maximilian Probst and Sachdeva, Sushant},
  title =	{{Optimal Electrical Oblivious Routing on Expanders}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{65:1--65:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.65},
  URN =		{urn:nbn:de:0030-drops-202083},
  doi =		{10.4230/LIPIcs.ICALP.2024.65},
  annote =	{Keywords: Expanders, Oblivious routing for 𝓁\underlinep, Electrical flow routing}
}
Document
The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems

Authors: Kunal Agrawal, Sanjoy Baruah, Michael A. Bender, and Alberto Marchetti-Spaccamela

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The algorithm-design paradigm of algorithms using predictions is explored as a means of incorporating the computations of lower-assurance components (such as machine-learning based ones) into safety-critical systems that must have their correctness validated to very high levels of assurance. The paradigm is applied to two simple example applications that are relevant to the real-time systems community: energy-aware scheduling, and classification using ML-based classifiers in conjunction with more reliable but slower deterministic classifiers. It is shown how algorithms using predictions achieve much-improved performance when the low-assurance computations are correct, at a cost of no more than a slight performance degradation even when they turn out to be completely wrong.

Cite as

Kunal Agrawal, Sanjoy Baruah, Michael A. Bender, and Alberto Marchetti-Spaccamela. The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agrawal_et_al:LIPIcs.ECRTS.2023.3,
  author =	{Agrawal, Kunal and Baruah, Sanjoy and Bender, Michael A. and Marchetti-Spaccamela, Alberto},
  title =	{{The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.3},
  URN =		{urn:nbn:de:0030-drops-180323},
  doi =		{10.4230/LIPIcs.ECRTS.2023.3},
  annote =	{Keywords: Algorithms using predictions, robust scheduling, energy minimization, classification, on-line scheduling}
}
Document
Feasibility Analysis of Conditional DAG Tasks

Authors: Sanjoy Baruah and Alberto Marchetti-Spaccamela

Published in: LIPIcs, Volume 196, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
Feasibility analysis for Conditional DAG tasks (C-DAGs) upon multiprocessor platforms is shown to be complete for the complexity class pspace. It is shown that as a consequence integer linear programming solvers (ILP solvers) are likely to prove inadequate for such analysis. A demarcation is identified between the feasibility-analysis problems on C-DAGs that are efficiently solvable using ILP solvers and those that are not, by characterizing a restricted class of C-DAGs for which feasibility analysis is shown to be efficiently solvable using ILP solvers.

Cite as

Sanjoy Baruah and Alberto Marchetti-Spaccamela. Feasibility Analysis of Conditional DAG Tasks. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 196, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baruah_et_al:LIPIcs.ECRTS.2021.12,
  author =	{Baruah, Sanjoy and Marchetti-Spaccamela, Alberto},
  title =	{{Feasibility Analysis of Conditional DAG Tasks}},
  booktitle =	{33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-192-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{196},
  editor =	{Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2021.12},
  URN =		{urn:nbn:de:0030-drops-139433},
  doi =		{10.4230/LIPIcs.ECRTS.2021.12},
  annote =	{Keywords: Multiprocessor feasibility analysis, Conditional Directed Acyclic Graphs, PSPACE-complete}
}
Document
Constructing Strings Avoiding Forbidden Substrings

Authors: Giulia Bernardini, Alberto Marchetti-Spaccamela, Solon P. Pissis, Leen Stougie, and Michelle Sweering

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
We consider the problem of constructing strings over an alphabet Σ that start with a given prefix u, end with a given suffix v, and avoid occurrences of a given set of forbidden substrings. In the decision version of the problem, given a set S_k of forbidden substrings, each of length k, over Σ, we are asked to decide whether there exists a string x over Σ such that u is a prefix of x, v is a suffix of x, and no s ∈ S_k occurs in x. Our first result is an 𝒪(|u|+|v|+k|S_k|)-time algorithm to decide this problem. In the more general optimization version of the problem, given a set S of forbidden arbitrary-length substrings over Σ, we are asked to construct a shortest string x over Σ such that u is a prefix of x, v is a suffix of x, and no s ∈ S occurs in x. Our second result is an 𝒪(|u|+|v|+||S||⋅|Σ|)-time algorithm to solve this problem, where ||S|| denotes the total length of the elements of S. Interestingly, our results can be directly applied to solve the reachability and shortest path problems in complete de Bruijn graphs in the presence of forbidden edges or of forbidden paths. Our algorithms are motivated by data privacy, and in particular, by the data sanitization process. In the context of strings, sanitization consists in hiding forbidden substrings from a given string by introducing the least amount of spurious information. We consider the following problem. Given a string w of length n over Σ, an integer k, and a set S_k of forbidden substrings, each of length k, over Σ, construct a shortest string y over Σ such that no s ∈ S_k occurs in y and the sequence of all other length-k fragments occurring in w is a subsequence of the sequence of the length-k fragments occurring in y. Our third result is an 𝒪(nk|S_k|⋅|Σ|)-time algorithm to solve this problem.

Cite as

Giulia Bernardini, Alberto Marchetti-Spaccamela, Solon P. Pissis, Leen Stougie, and Michelle Sweering. Constructing Strings Avoiding Forbidden Substrings. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bernardini_et_al:LIPIcs.CPM.2021.9,
  author =	{Bernardini, Giulia and Marchetti-Spaccamela, Alberto and Pissis, Solon P. and Stougie, Leen and Sweering, Michelle},
  title =	{{Constructing Strings Avoiding Forbidden Substrings}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.9},
  URN =		{urn:nbn:de:0030-drops-139604},
  doi =		{10.4230/LIPIcs.CPM.2021.9},
  annote =	{Keywords: string algorithms, forbidden strings, de Bruijn graphs, data sanitization}
}
  • Refine by Author
  • 8 Marchetti-Spaccamela, Alberto
  • 2 Baruah, Sanjoy
  • 2 Borndörfer, Ralf
  • 2 Cacchiani, Valentina
  • 2 Stougie, Leen
  • Show More...

  • Refine by Classification
  • 6 Applied computing → Transportation
  • 3 Mathematics of computing → Combinatorial optimization
  • 3 Mathematics of computing → Graph algorithms
  • 3 Mathematics of computing → Graph theory
  • 3 Theory of computation → Online algorithms
  • Show More...

  • Refine by Keyword
  • 2 Integer Programming
  • 2 approximation algorithms
  • 2 preprocessing
  • 2 scheduling
  • 2 shortest path
  • Show More...

  • Refine by Type
  • 33 document
  • 1 volume

  • Refine by Publication Year
  • 17 2019
  • 11 2024
  • 2 2021
  • 1 2005
  • 1 2008
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail