18 Search Results for "Mass, David"


Document
Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities

Authors: Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
Modelling passenger assignments in public transport networks is a fundamental task for city planners, especially when deliberating network infrastructure decisions. A key aspect of a realistic model for passenger assignments is to integrate selfish routing behaviour of passengers on the one hand, and the limited vehicle capacities on the other hand. We formulate a side-constrained user equilibrium model in a schedule-based time-expanded transit network, where passengers are modelled via a continuum of non-atomic agents that want to travel with a fixed start time from a user-specific origin to a destination. An agent’s route may comprise several rides along given lines, each using vehicles with hard loading capacities. We give a characterization of (side-constrained) user equilibria via a quasi-variational inequality and prove their existence by generalizing a well-known existence result of Bernstein and Smith (Transp. Sci., 1994). We further derive a polynomial time algorithm for single-commodity instances and an exact finite time algorithm for the multi-commodity case. Based on our quasi-variational characterization, we finally devise a fast heuristic computing user equilibria, which is tested on real-world instances based on data gained from the Hamburg S-Bahn system and the Swiss long-distance train network. It turns out that w.r.t. the total travel time, the computed user-equilibria are quite efficient compared to a system optimum, which neglects equilibrium constraints and only minimizes total travel time.

Cite as

Tobias Harks, Sven Jäger, Michael Markl, and Philine Schiewe. Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{harks_et_al:OASIcs.ATMOS.2024.17,
  author =	{Harks, Tobias and J\"{a}ger, Sven and Markl, Michael and Schiewe, Philine},
  title =	{{Computing User Equilibria for Schedule-Based Transit Networks with Hard Vehicle Capacities}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{17:1--17:17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.17},
  URN =		{urn:nbn:de:0030-drops-212054},
  doi =		{10.4230/OASIcs.ATMOS.2024.17},
  annote =	{Keywords: traffic assignment, side-constrained equilibrium, public transportation}
}
Document
RANDOM
Expanderizing Higher Order Random Walks

Authors: Vedat Levi Alev and Shravas Rao

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study a variant of the down-up (also known as the Glauber dynamics) and up-down walks over an n-partite simplicial complex, which we call expanderized higher order random walks - where the sequence of updated coordinates correspond to the sequence of vertices visited by a random walk over an auxiliary expander graph H. When H is the clique with self loops on [n], this random walk reduces to the usual down-up walk and when H is the directed cycle on [n], this random walk reduces to the well-known systematic scan Glauber dynamics. We show that whenever the usual higher order random walks satisfy a log-Sobolev inequality or a Poincaré inequality, the expanderized walks satisfy the same inequalities with a loss of quality related to the two-sided expansion of the auxillary graph H. Our construction can be thought as a higher order random walk generalization of the derandomized squaring algorithm of Rozenman and Vadhan (RANDOM 2005). We study the mixing times of our expanderized walks in two example cases: We show that when initiated with an expander graph our expanderized random walks have mixing time (i) O(n log n) for sampling a uniformly random list colorings of a graph G of maximum degree Δ = O(1) where each vertex has at least (11/6 - ε) Δ and at most O(Δ) colors, (ii) O_h((n log n)/(1 - ‖J‖_op)²) for sampling the Ising model with a PSD interaction matrix J ∈ ℝ^{n×n} satisfying ‖J‖_op ≤ 1 and the external field h ∈ ℝⁿ- here the O(•) notation hides a constant that depends linearly on the largest entry of h. As expander graphs can be very sparse, this decreases the amount of randomness required to simulate the down-up walks by a logarithmic factor. We also prove some simple results which enable us to argue about log-Sobolev constants of higher order random walks and provide a simple and self-contained analysis of local-to-global Φ-entropy contraction in simplicial complexes - giving simpler proofs for many pre-existing results.

Cite as

Vedat Levi Alev and Shravas Rao. Expanderizing Higher Order Random Walks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 58:1-58:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alev_et_al:LIPIcs.APPROX/RANDOM.2024.58,
  author =	{Alev, Vedat Levi and Rao, Shravas},
  title =	{{Expanderizing Higher Order Random Walks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{58:1--58:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.58},
  URN =		{urn:nbn:de:0030-drops-210510},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.58},
  annote =	{Keywords: Higher Order Random Walks, Expander Graphs, Glauber Dynamics, Derandomized Squaring, High Dimensional Expansion, Spectral Independence, Entropic Independence}
}
Document
RANDOM
Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Authors: Yotam Dikstein and Irit Dinur

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of SL_n(𝔽_q). The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and Oppenheim. Our new expansion constants do not depend on the degree of the complex nor on its dimension, nor on the group of coefficients. This implies improved bounds on Gromov’s topological overlap constant, and on Dinur and Meshulam’s cover stability, which may have applications for agreement testing. In comparison, existing bounds decay exponentially with the ambient dimension (for spherical buildings) and in addition decay linearly with the degree (for all known bounded-degree high dimensional expanders). Our results are based on several new techniques: - We develop a new "color-restriction" technique which enables proving dimension-free expansion by restricting a multi-partite complex to small random subsets of its color classes. - We give a new "spectral" proof for Evra and Kaufman’s local-to-global theorem, deriving better bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic expansion of a complex using coboundary expansion and spectral expansion of the links. - We derive absolute bounds on the coboundary expansion of the spherical building (and any order complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.

Cite as

Yotam Dikstein and Irit Dinur. Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 62:1-62:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dikstein_et_al:LIPIcs.APPROX/RANDOM.2024.62,
  author =	{Dikstein, Yotam and Dinur, Irit},
  title =	{{Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{62:1--62:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  URN =		{urn:nbn:de:0030-drops-210556},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  annote =	{Keywords: High Dimensional Expanders, HDX, Spectral Expansion, Coboundary Expansion, Cocycle Expansion, Cosystolic Expansion}
}
Document
Adaptive Curves for Optimally Efficient Market Making

Authors: Viraj Nadkarni, Sanjeev Kulkarni, and Pramod Viswanath

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets into liquidity pools. However, the asset trading prices in these pools often trail behind those in more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is tackled by adapting market maker bonding curves to trader behavior, based on the classical market microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for the market maker’s prices. We derive the differential equation that an optimal adaptive curve should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A key feature of our method is its ability to estimate the external market price without relying on price or loss oracles. We also provide an equivalent differential equation for the implied dynamics of canonical static bonding curves and establish conditions for their optimality. Our algorithms demonstrate robustness to changing market conditions and adversarial perturbations, and we offer an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors.

Cite as

Viraj Nadkarni, Sanjeev Kulkarni, and Pramod Viswanath. Adaptive Curves for Optimally Efficient Market Making. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{nadkarni_et_al:LIPIcs.AFT.2024.25,
  author =	{Nadkarni, Viraj and Kulkarni, Sanjeev and Viswanath, Pramod},
  title =	{{Adaptive Curves for Optimally Efficient Market Making}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.25},
  URN =		{urn:nbn:de:0030-drops-209612},
  doi =		{10.4230/LIPIcs.AFT.2024.25},
  annote =	{Keywords: Automated market makers, Adaptive, Glosten-Milgrom, Decentralized Finance}
}
Document
Cross Module Quickening - The Curious Case of C Extensions

Authors: Felix Berlakovich and Stefan Brunthaler

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Dynamic programming languages such as Python offer expressive power and programmer productivity at the expense of performance. Although the topic of optimizing Python has received considerable attention over the years, a key obstacle remains elusive: C extensions. Time and again, optimized run-time environments, such as JIT compilers and optimizing interpreters, fall short of optimizing across C extensions, as they cannot reason about the native code hiding underneath. To bridge this gap, we present an analysis of C extensions for Python. The analysis data indicates that C extensions come in different varieties. One such variety is to merely speed up a single thing, such as reading a file and processing it directly in C. Another variety offers broad access through an API, resulting in a domain-specific language realized by function calls. While the former variety of C extensions offer little optimization potential for optimizing run-times, we find that the latter variety does offer considerable optimization potential. This optimization potential rests on dynamic locality that C extensions cannot readily tap. We introduce a new, interpreter-based optimization leveraging this untapped optimization potential called Cross-Module Quickening. The key idea is that C extensions can use an optimization interface to register highly-optimized operations on C extension-specific datatypes. A quickening interpreter uses these information to continuously specialize programs with C extensions. To quantify the attainable performance potential of going beyond C extensions, we demonstrate a concrete instantiation of Cross-Module Quickening for the CPython interpreter and the popular NumPy C extension. We evaluate our implementation with the NPBench benchmark suite and report performance improvements by a factor of up to 2.84.

Cite as

Felix Berlakovich and Stefan Brunthaler. Cross Module Quickening - The Curious Case of C Extensions. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 6:1-6:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berlakovich_et_al:LIPIcs.ECOOP.2024.6,
  author =	{Berlakovich, Felix and Brunthaler, Stefan},
  title =	{{Cross Module Quickening - The Curious Case of C Extensions}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{6:1--6:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.6},
  URN =		{urn:nbn:de:0030-drops-208557},
  doi =		{10.4230/LIPIcs.ECOOP.2024.6},
  annote =	{Keywords: interpreter, optimizations, C extensions, Python}
}
Document
Failure Transparency in Stateful Dataflow Systems

Authors: Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Failure transparency enables users to reason about distributed systems at a higher level of abstraction, where complex failure-handling logic is hidden. This is especially true for stateful dataflow systems, which are the backbone of many cloud applications. In particular, this paper focuses on proving failure transparency in Apache Flink, a popular stateful dataflow system. Even though failure transparency is a critical aspect of Apache Flink, to date it has not been formally proven. Showing that the failure transparency mechanism is correct, however, is challenging due to the complexity of the mechanism itself. Nevertheless, this complexity can be effectively hidden behind a failure transparent programming interface. To show that Apache Flink is failure transparent, we model it in small-step operational semantics. Next, we provide a novel definition of failure transparency based on observational explainability, a concept which relates executions according to their observations. Finally, we provide a formal proof of failure transparency for the implementation model; i.e., we prove that the failure-free model correctly abstracts from the failure-related details of the implementation model. We also show liveness of the implementation model under a fair execution assumption. These results are a first step towards a verified stack for stateful dataflow systems.

Cite as

Aleksey Veresov, Jonas Spenger, Paris Carbone, and Philipp Haller. Failure Transparency in Stateful Dataflow Systems. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 42:1-42:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{veresov_et_al:LIPIcs.ECOOP.2024.42,
  author =	{Veresov, Aleksey and Spenger, Jonas and Carbone, Paris and Haller, Philipp},
  title =	{{Failure Transparency in Stateful Dataflow Systems}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{42:1--42:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.42},
  URN =		{urn:nbn:de:0030-drops-208911},
  doi =		{10.4230/LIPIcs.ECOOP.2024.42},
  annote =	{Keywords: Failure transparency, stateful dataflow, operational semantics, checkpoint recovery}
}
Document
Pseudorandomness, Symmetry, Smoothing: I

Authors: Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that - achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. - have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. - rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.

Cite as

Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, Symmetry, Smoothing: I. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 18:1-18:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2024.18,
  author =	{Derksen, Harm and Ivanov, Peter and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Pseudorandomness, Symmetry, Smoothing: I}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{18:1--18:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.18},
  URN =		{urn:nbn:de:0030-drops-204144},
  doi =		{10.4230/LIPIcs.CCC.2024.18},
  annote =	{Keywords: pseudorandomness, k-wise uniform distributions, small-bias distributions, noise, symmetric tests, thresholds, Krawtchouk polynomials}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
RANDOM
Fine Grained Analysis of High Dimensional Random Walks

Authors: Roy Gotlib and Tali Kaufman

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
One of the most important properties of high dimensional expanders is that high dimensional random walks converge rapidly. This property has proven to be extremely useful in a variety of fields in the theory of computer science from agreement testing to sampling, coding theory and more. In this paper we present a state of the art result in a line of works analyzing the convergence of high dimensional random walks [Tali Kaufman and David Mass, 2017; Irit Dinur and Tali Kaufman, 2017; Tali Kaufman and Izhar Oppenheim, 2018; Vedat Levi Alev and Lap Chi Lau, 2020], by presenting a structured version of the result of [Vedat Levi Alev and Lap Chi Lau, 2020]. While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in this work we relate the expansion of a function to the entire spectrum of the random walk operator using the structure of the function; We call such a theorem a Fine Grained High Order Random Walk Theorem. In sufficiently structured cases the fine grained result that we present here can be much better than the worst case while in the worst case our result is equivalent to [Vedat Levi Alev and Lap Chi Lau, 2020]. In order to prove the Fine Grained High Order Random Walk Theorem we introduce a way to bootstrap the expansion of random walks on the vertices of a complex into a fine grained understanding of higher order random walks, provided that the expansion is good enough. In addition, our single bootstrapping theorem can simultaneously yield our Fine Grained High Order Random Walk Theorem as well as the well known Trickling down Theorem. Prior to this work, High order Random walks theorems and Tricking down Theorem have been obtained from different proof methods.

Cite as

Roy Gotlib and Tali Kaufman. Fine Grained Analysis of High Dimensional Random Walks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gotlib_et_al:LIPIcs.APPROX/RANDOM.2023.49,
  author =	{Gotlib, Roy and Kaufman, Tali},
  title =	{{Fine Grained Analysis of High Dimensional Random Walks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.49},
  URN =		{urn:nbn:de:0030-drops-188740},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.49},
  annote =	{Keywords: High Dimensional Expanders, High Dimensional Random Walks, Local Spectral Expansion, Local to Global, Trickling Down}
}
Document
Track A: Algorithms, Complexity and Games
Parameter Estimation for Gibbs Distributions

Authors: David G. Harris and Vladimir Kolmogorov

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A central problem in computational statistics is to convert a procedure for sampling combinatorial objects into a procedure for counting those objects, and vice versa. We will consider sampling problems which come from Gibbs distributions, which are families of probability distributions over a discrete space Ω with probability mass function of the form μ^Ω_β(ω) ∝ e^{β H(ω)} for β in an interval [β_min, β_max] and H(ω) ∈ {0} ∪ [1, n]. The partition function is the normalization factor Z(β) = ∑_{ω ∈ Ω} e^{β H(ω)}, and the log partition ratio is defined as q = (log Z(β_max))/Z(β_min) We develop a number of algorithms to estimate the counts c_x using roughly Õ(q/ε²) samples for general Gibbs distributions and Õ(n²/ε²) samples for integer-valued distributions (ignoring some second-order terms and parameters), We show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph.

Cite as

David G. Harris and Vladimir Kolmogorov. Parameter Estimation for Gibbs Distributions. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 72:1-72:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{harris_et_al:LIPIcs.ICALP.2023.72,
  author =	{Harris, David G. and Kolmogorov, Vladimir},
  title =	{{Parameter Estimation for Gibbs Distributions}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{72:1--72:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.72},
  URN =		{urn:nbn:de:0030-drops-181246},
  doi =		{10.4230/LIPIcs.ICALP.2023.72},
  annote =	{Keywords: Gibbs distribution, sampling}
}
Document
RANDOM
Double Balanced Sets in High Dimensional Expanders

Authors: Tali Kaufman and David Mass

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Recent works have shown that expansion of pseudorandom sets is of great importance. However, all current works on pseudorandom sets are limited only to product (or approximate product) spaces, where Fourier Analysis methods could be applied. In this work we ask the natural question whether pseudorandom sets are relevant in domains where Fourier Analysis methods cannot be applied, e.g., one-sided local spectral expanders. We take the first step in the path of answering this question. We put forward a new definition for pseudorandom sets, which we call "double balanced sets". We demonstrate the strength of our new definition by showing that small double balanced sets in one-sided local spectral expanders have very strong expansion properties, such as unique-neighbor-like expansion. We further show that cohomologies in cosystolic expanders are double balanced, and use the newly derived strong expansion properties of double balanced sets in order to obtain an exponential improvement over the current state of the art lower bound on their minimal distance.

Cite as

Tali Kaufman and David Mass. Double Balanced Sets in High Dimensional Expanders. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kaufman_et_al:LIPIcs.APPROX/RANDOM.2022.3,
  author =	{Kaufman, Tali and Mass, David},
  title =	{{Double Balanced Sets in High Dimensional Expanders}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.3},
  URN =		{urn:nbn:de:0030-drops-171257},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.3},
  annote =	{Keywords: High dimensional expanders, Double balanced sets, Pseudorandom functions}
}
Document
Unique-Neighbor-Like Expansion and Group-Independent Cosystolic Expansion

Authors: Tali Kaufman and David Mass

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
In recent years, high dimensional expanders have been found to have a variety of applications in theoretical computer science, such as efficient CSPs approximations, improved sampling and list-decoding algorithms, and more. Within that, an important high dimensional expansion notion is cosystolic expansion, which has found applications in the construction of efficiently decodable quantum codes and in proving lower bounds for CSPs. Cosystolic expansion is considered with systems of equations over a group where the variables and equations correspond to faces of the complex. Previous works that studied cosystolic expansion were tailored to the specific group 𝔽₂. In particular, Kaufman, Kazhdan and Lubotzky (FOCS 2014), and Evra and Kaufman (STOC 2016) in their breakthrough works, who solved a famous open question of Gromov, have studied a notion which we term "parity" expansion for small sets. They showed that small sets of k-faces have proportionally many (k+1)-faces that contain an odd number of k-faces from the set. Parity expansion for small sets could then be used to imply cosystolic expansion only over 𝔽₂. In this work we introduce a stronger unique-neighbor-like expansion for small sets. We show that small sets of k-faces have proportionally many (k+1)-faces that contain exactly one k-face from the set. This notion is fundamentally stronger than parity expansion and cannot be implied by previous works. We then show, utilizing the new unique-neighbor-like expansion notion introduced in this work, that cosystolic expansion can be made group-independent, i.e., unique-neighbor-like expansion for small sets implies cosystolic expansion over any group.

Cite as

Tali Kaufman and David Mass. Unique-Neighbor-Like Expansion and Group-Independent Cosystolic Expansion. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 56:1-56:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kaufman_et_al:LIPIcs.ISAAC.2021.56,
  author =	{Kaufman, Tali and Mass, David},
  title =	{{Unique-Neighbor-Like Expansion and Group-Independent Cosystolic Expansion}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{56:1--56:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.56},
  URN =		{urn:nbn:de:0030-drops-154898},
  doi =		{10.4230/LIPIcs.ISAAC.2021.56},
  annote =	{Keywords: High dimensional expanders, Unique-neighbor-like expansion, Cosystolic expansion}
}
Document
Fréchet Mean and p-Mean on the Unit Circle: Decidability, Algorithm, and Applications to Clustering on the Flat Torus

Authors: Frédéric Cazals, Bernard Delmas, and Timothee O'Donnell

Published in: LIPIcs, Volume 190, 19th International Symposium on Experimental Algorithms (SEA 2021)


Abstract
The center of mass of a point set lying on a manifold generalizes the celebrated Euclidean centroid, and is ubiquitous in statistical analysis in non Euclidean spaces. In this work, we give a complete characterization of the weighted p-mean of a finite set of angular values on S¹, based on a decomposition of S¹ such that the functional of interest has at most one local minimum per cell. This characterization is used to show that the problem is decidable for rational angular values -a consequence of Lindemann’s theorem on the transcendence of π, and to develop an effective algorithm parameterized by exact predicates. A robust implementation of this algorithm based on multi-precision interval arithmetic is also presented, and is shown to be effective for large values of n and p. We use it as building block to implement the k-means and k-means++ clustering algorithms on the flat torus, with applications to clustering protein molecular conformations. These algorithms are available in the Structural Bioinformatics Library (http://sbl.inria.fr). Our derivations are of interest in two respects. First, efficient p-mean calculations are relevant to develop principal components analysis on the flat torus encoding angular spaces-a particularly important case to describe molecular conformations. Second, our two-stage strategy stresses the interest of combinatorial methods for p-means, also emphasizing the role of numerical issues.

Cite as

Frédéric Cazals, Bernard Delmas, and Timothee O'Donnell. Fréchet Mean and p-Mean on the Unit Circle: Decidability, Algorithm, and Applications to Clustering on the Flat Torus. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cazals_et_al:LIPIcs.SEA.2021.15,
  author =	{Cazals, Fr\'{e}d\'{e}ric and Delmas, Bernard and O'Donnell, Timothee},
  title =	{{Fr\'{e}chet Mean and p-Mean on the Unit Circle: Decidability, Algorithm, and Applications to Clustering on the Flat Torus}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2021.15},
  URN =		{urn:nbn:de:0030-drops-137870},
  doi =		{10.4230/LIPIcs.SEA.2021.15},
  annote =	{Keywords: Frech\'{e}t mean, p-mean, circular statistics, decidability, robustness, multi-precision, angular spaces, flat torus, clustering, molecular conformations}
}
Document
Local-To-Global Agreement Expansion via the Variance Method

Authors: Tali Kaufman and David Mass

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Agreement expansion is concerned with set systems for which local assignments to the sets with almost perfect pairwise consistency (i.e., most overlapping pairs of sets agree on their intersections) implies the existence of a global assignment to the ground set (from which the sets are defined) that agrees with most of the local assignments. It is currently known that if a set system forms a two-sided or a partite high dimensional expander then agreement expansion is implied. However, it was not known whether agreement expansion can be implied for one-sided high dimensional expanders. In this work we show that agreement expansion can be deduced for one-sided high dimensional expanders assuming that all the vertices' links (i.e., the neighborhoods of the vertices) are agreement expanders. Thus, for one-sided high dimensional expander, an agreement expansion of the large complicated complex can be deduced from agreement expansion of its small simple links. Using our result, we settle the open question whether the well studied Ramanujan complexes are agreement expanders. These complexes are neither partite nor two-sided high dimensional expanders. However, they are one-sided high dimensional expanders for which their links are partite and hence are agreement expanders. Thus, our result implies that Ramanujan complexes are agreement expanders, answering affirmatively the aforementioned open question. The local-to-global agreement expansion that we prove is based on the variance method that we develop. We show that for a high dimensional expander, if we define a function on its top faces and consider its local averages over the links then the variance of these local averages is much smaller than the global variance of the original function. This decreasing in the variance enables us to construct one global agreement function that ties together all local agreement functions.

Cite as

Tali Kaufman and David Mass. Local-To-Global Agreement Expansion via the Variance Method. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 74:1-74:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kaufman_et_al:LIPIcs.ITCS.2020.74,
  author =	{Kaufman, Tali and Mass, David},
  title =	{{Local-To-Global Agreement Expansion via the Variance Method}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{74:1--74:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.74},
  URN =		{urn:nbn:de:0030-drops-117597},
  doi =		{10.4230/LIPIcs.ITCS.2020.74},
  annote =	{Keywords: Agreement testing, High dimensional expanders, Local-to-global, Variance method}
}
Document
High Order Random Walks: Beyond Spectral Gap

Authors: Tali Kaufman and Izhar Oppenheim

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We study high order random walks on high dimensional expanders on simplicial complexes (i.e., hypergraphs). These walks walk from a k-face (i.e., a k-hyperedge) to a k-face if they are both contained in a k+1-face (i.e, a k+1 hyperedge). This naturally generalizes the random walks on graphs that walk from a vertex (0-face) to a vertex if they are both contained in an edge (1-face). Recent works have studied the spectrum of high order walks operators and deduced fast mixing. However, the spectral gap of high order walks operators is inherently small, due to natural obstructions (called coboundaries) that do not happen for walks on expander graphs. In this work we go beyond spectral gap, and relate the expansion of a function on k-faces (called k-cochain, for k=0, this is a function on vertices) to its structure. We show a Decomposition Theorem: For every k-cochain defined on high dimensional expander, there exists a decomposition of the cochain into i-cochains such that the square norm of the k-cochain is a sum of the square norms of the i-chains and such that the more weight the k-cochain has on higher levels of the decomposition the better is its expansion, or equivalently, the better is its shrinkage by the high order random walk operator. The following corollaries are implied by the Decomposition Theorem: - We characterize highly expanding k-cochains as those whose mass is concentrated on the highest levels of the decomposition that we construct. For example, a function on edges (i.e. a 1-cochain) which is locally thin (i.e. it contains few edges through every vertex) is highly expanding, while a function on edges that contains all edges through a single vertex is not highly expanding. - We get optimal mixing for high order random walks on Ramanujan complexes. Ramanujan complexes are recently discovered bounded degree high dimensional expanders. The optimality in their mixing that we prove here, enable us to get from them more efficient Two-Layer-Samplers than those presented by the previous work of Dinur and Kaufman.

Cite as

Tali Kaufman and Izhar Oppenheim. High Order Random Walks: Beyond Spectral Gap. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 47:1-47:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kaufman_et_al:LIPIcs.APPROX-RANDOM.2018.47,
  author =	{Kaufman, Tali and Oppenheim, Izhar},
  title =	{{High Order Random Walks: Beyond Spectral Gap}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{47:1--47:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.47},
  URN =		{urn:nbn:de:0030-drops-94516},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.47},
  annote =	{Keywords: High Dimensional Expanders, Simplicial Complexes, Random Walk}
}
  • Refine by Author
  • 6 Kaufman, Tali
  • 4 Mass, David
  • 1 Alev, Vedat Levi
  • 1 Berlakovich, Felix
  • 1 Blin, Guillaume
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Computational complexity and cryptography
  • 3 Theory of computation → Expander graphs and randomness extractors
  • 3 Theory of computation → Random walks and Markov chains
  • 2 Theory of computation → Dynamic programming
  • 1 Applied computing → Bioinformatics
  • Show More...

  • Refine by Keyword
  • 4 High dimensional expanders
  • 3 High Dimensional Expanders
  • 1 Adaptive
  • 1 Agreement testing
  • 1 Application to brachytherapy
  • Show More...

  • Refine by Type
  • 18 document

  • Refine by Publication Year
  • 8 2024
  • 3 2018
  • 2 2021
  • 2 2023
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail