17 Search Results for "Mayr, Peter"


Document
Formalizing, Mechanizing, and Verifying Class-Based Refinement Types

Authors: Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Refinement types have been extensively used in class-based languages to specify and verify fine-grained logical specifications. Despite the advances in practical aspects such as applicability and usability, two fundamental issues persist. First, the soundness of existing class-based refinement type systems is inadequately explored, casting doubts on their reliability. Second, the expressiveness of existing systems is limited, restricting the depiction of semantic properties related to object-oriented constructs. This work tackles these issues through a systematic framework. We formalize a declarative class-based refinement type calculus (named RFJ), that is expressive and concise. We rigorously develop the soundness meta-theory of this calculus, followed by its mechanization in Coq. Finally, to ensure the calculus’s verifiability, we propose an algorithmic verification approach based on a fragment of first-order logic (named LFJ), and implement this approach as a type checker.

Cite as

Ke Sun, Di Wang, Sheng Chen, Meng Wang, and Dan Hao. Formalizing, Mechanizing, and Verifying Class-Based Refinement Types. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 39:1-39:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECOOP.2024.39,
  author =	{Sun, Ke and Wang, Di and Chen, Sheng and Wang, Meng and Hao, Dan},
  title =	{{Formalizing, Mechanizing, and Verifying Class-Based Refinement Types}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{39:1--39:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.39},
  URN =		{urn:nbn:de:0030-drops-208881},
  doi =		{10.4230/LIPIcs.ECOOP.2024.39},
  annote =	{Keywords: Refinement Types, Program Verification, Object-oriented Programming}
}
Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Weighted Basic Parallel Processes and Combinatorial Enumeration

Authors: Lorenzo Clemente

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Cite as

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clemente:LIPIcs.CONCUR.2024.18,
  author =	{Clemente, Lorenzo},
  title =	{{Weighted Basic Parallel Processes and Combinatorial Enumeration}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.18},
  URN =		{urn:nbn:de:0030-drops-207903},
  doi =		{10.4230/LIPIcs.CONCUR.2024.18},
  annote =	{Keywords: weighted automata, combinatorial enumeration, shuffle, algebraic differential equations, process algebra, basic parallel processes, species of structures}
}
Document
ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

Authors: Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
As a broadly applied technique in numerous optimization problems, recently, local search has been employed to solve Pseudo-Boolean Optimization (PBO) problem. A representative local search solver for PBO is LS-PBO. In this paper, firstly, we improve LS-PBO by a dynamic scoring mechanism, which dynamically strikes a balance between score on hard constraints and score on the objective function. Moreover, on top of this improved LS-PBO, we develop the first parallel local search PBO solver. The main idea is to share good solutions among different threads to guide the search, by maintaining a pool of feasible solutions. For evaluating solutions when updating the pool, we propose a function that considers both the solution quality and the diversity of the pool. Furthermore, we calculate the polarity density in the pool to enhance the scoring function of local search. Our empirical experiments show clear benefits of the proposed parallel approach, making it competitive with the parallel version of the famous commercial solver Gurobi.

Cite as

Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai. ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CP.2024.5,
  author =	{Chen, Zhihan and Lin, Peng and Hu, Hao and Cai, Shaowei},
  title =	{{ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.5},
  URN =		{urn:nbn:de:0030-drops-206900},
  doi =		{10.4230/LIPIcs.CP.2024.5},
  annote =	{Keywords: Pseudo-Boolean Optimization, Parallel Solving, Local Search, Scoring Function, Solution Pool}
}
Document
Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Authors: Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A classical problem in computational geometry and graph algorithms is: given a dynamic set 𝒮 of geometric shapes in the plane, efficiently maintain the connectivity of the intersection graph of 𝒮. Previous papers studied the setting where, before the updates, the data structure receives some parameter P. Then, updates could insert and delete disks as long as at all times the disks have a diameter that lies in a fixed range [1/P, 1]. As a consequence of that prerequisite, the aspect ratio ψ (i.e. the ratio between the largest and smallest diameter) of the disks would at all times satisfy ψ ≤ P. The state-of-the-art for storing disks in a dynamic connectivity data structure is a data structure that uses O(Pn) space and that has amortized O(P log⁴ n) expected amortized update time. Connectivity queries between disks are supported in O(log n / log log n) time. In the dynamic setting, one wishes for a more flexible data structure in which disks of any diameter may arrive and leave, independent of their diameter, changing the aspect ratio freely. Ideally, the aspect ratio should merely be part of the analysis. We restrict our attention to axis-aligned squares, and study fully-dynamic square intersection graph connectivity. Our result is fully-adaptive to the aspect ratio, spending time proportional to the current aspect ratio ψ, as opposed to some previously given maximum P. Our focus on squares allows us to simplify and streamline the connectivity pipeline from previous work. When n is the number of squares and ψ is the aspect ratio after insertion (or before deletion), our data structure answers connectivity queries in O(log n / log log n) time. We can update connectivity information in O(ψ log⁴ n + log⁶ n) amortized time. We also improve space usage from O(P ⋅ n log n) to O(n log³ n log ψ) - while generalizing to a fully-adaptive aspect ratio - which yields a space usage that is near-linear in n for any polynomially bounded ψ.

Cite as

Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals. Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.MFCS.2024.63,
  author =	{van der Hoog, Ivor and Nusser, Andr\'{e} and Rotenberg, Eva and Staals, Frank},
  title =	{{Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{63:1--63:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.63},
  URN =		{urn:nbn:de:0030-drops-206197},
  doi =		{10.4230/LIPIcs.MFCS.2024.63},
  annote =	{Keywords: Computational geometry, planar geometry, data structures, geometric intersection graphs, fully-dynamic algorithms}
}
Document
Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti

Authors: Thiago Felicissimo and Théo Winterhalter

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Proof assistants such as Coq implement a type theory featuring three important features: impredicativity, cumulativity and product covariance. This combination has proven difficult to be expressed in the logical framework Dedukti, and previous attempts have failed in providing an encoding that is proven confluent, sound and conservative. In this work we solve this longstanding open problem by providing an encoding of these three features that we prove to be confluent, sound and to satisfy a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a contribution by itself, and combines various criteria and proof techniques from rewriting theory. Our proof of soundness also contributes a new strategy in which the result is shown in terms of an inverse translation function, fixing a common flaw made in some previous encoding attempts.

Cite as

Thiago Felicissimo and Théo Winterhalter. Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{felicissimo_et_al:LIPIcs.FSCD.2024.21,
  author =	{Felicissimo, Thiago and Winterhalter, Th\'{e}o},
  title =	{{Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.21},
  URN =		{urn:nbn:de:0030-drops-203503},
  doi =		{10.4230/LIPIcs.FSCD.2024.21},
  annote =	{Keywords: Dedukti, Rewriting, Confluence, Dependent types, Cumulativity, Universes}
}
Document
Track A: Algorithms, Complexity and Games
It’s Hard to HAC Average Linkage!

Authors: MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small.

Cite as

MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki. It’s Hard to HAC Average Linkage!. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bateni_et_al:LIPIcs.ICALP.2024.18,
  author =	{Bateni, MohammadHossein and Dhulipala, Laxman and Gowda, Kishen N. and Hershkowitz, D. Ellis and Jayaram, Rajesh and {\L}\k{a}cki, Jakub},
  title =	{{It’s Hard to HAC Average Linkage!}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.18},
  URN =		{urn:nbn:de:0030-drops-201613},
  doi =		{10.4230/LIPIcs.ICALP.2024.18},
  annote =	{Keywords: Clustering, Hierarchical Graph Clustering, HAC, Fine-Grained Complexity, Parallel Algorithms, CC}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Algorithm for Reachability in d-VASS

Authors: Yuxi Fu, Qizhe Yang, and Yangluo Zheng

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An 𝖥_{d} upper bound for the reachability problem in vector addition systems with states (VASS) in fixed dimension is given, where 𝖥_d is the d-th level of the Grzegorczyk hierarchy of complexity classes. The new algorithm combines the idea of the linear path scheme characterization of the reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju and Lambert. The result improves the 𝖥_{d + 4} upper bound due to Leroux and Schmitz (LICS 2019).

Cite as

Yuxi Fu, Qizhe Yang, and Yangluo Zheng. Improved Algorithm for Reachability in d-VASS. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 136:1-136:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2024.136,
  author =	{Fu, Yuxi and Yang, Qizhe and Zheng, Yangluo},
  title =	{{Improved Algorithm for Reachability in d-VASS}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{136:1--136:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.136},
  URN =		{urn:nbn:de:0030-drops-202799},
  doi =		{10.4230/LIPIcs.ICALP.2024.136},
  annote =	{Keywords: Petri net, vector addition system, reachability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Solving Promise Equations over Monoids and Groups

Authors: Alberto Larrauri and Stanislav Živný

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a complete complexity classification for the problem of finding a solution to a given system of equations over a fixed finite monoid, given that a solution over a more restricted monoid exists. As a corollary, we obtain a complexity classification for the same problem over groups.

Cite as

Alberto Larrauri and Stanislav Živný. Solving Promise Equations over Monoids and Groups. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 146:1-146:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{larrauri_et_al:LIPIcs.ICALP.2024.146,
  author =	{Larrauri, Alberto and \v{Z}ivn\'{y}, Stanislav},
  title =	{{Solving Promise Equations over Monoids and Groups}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{146:1--146:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.146},
  URN =		{urn:nbn:de:0030-drops-202893},
  doi =		{10.4230/LIPIcs.ICALP.2024.146},
  annote =	{Keywords: constraint satisfaction, promise constraint satisfaction, equations, minions}
}
Document
Survey
Logics for Conceptual Data Modelling: A Review

Authors: Pablo R. Fillottrani and C. Maria Keet

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Information modelling for databases and object-oriented information systems avails of conceptual data modelling languages such as EER and UML Class Diagrams. Many attempts exist to add logical rigour to them, for various reasons and with disparate strengths. In this paper we aim to provide a structured overview of the many efforts. We focus on aims, approaches to the formalisation, including key dimensions of choice points, popular logics used, and the main relevant reasoning services. We close with current challenges and research directions.

Cite as

Pablo R. Fillottrani and C. Maria Keet. Logics for Conceptual Data Modelling: A Review. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fillottrani_et_al:TGDK.2.1.4,
  author =	{Fillottrani, Pablo R. and Keet, C. Maria},
  title =	{{Logics for Conceptual Data Modelling: A Review}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:30},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.4},
  URN =		{urn:nbn:de:0030-drops-198616},
  doi =		{10.4230/TGDK.2.1.4},
  annote =	{Keywords: Conceptual Data Modelling, EER, UML, Description Logics, OWL}
}
Document
The Subpower Membership Problem of 2-Nilpotent Algebras

Authors: Michael Kompatscher

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The subpower membership problem SMP(𝐀) of a finite algebraic structure 𝐀 asks whether a given partial function from Aⁿ to A can be interpolated by a term operation of 𝐀, or not. While this problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in polynomial time if 𝐀 is a Mal'tsev algebra. In particular, this includes many important structures studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we give an affirmative answer to Willard’s question for a big class of 2-nilpotent Mal'tsev algebras. We furthermore develop tools that might be essential in answering the question for general nilpotent Mal'tsev algebras in the future.

Cite as

Michael Kompatscher. The Subpower Membership Problem of 2-Nilpotent Algebras. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kompatscher:LIPIcs.STACS.2024.46,
  author =	{Kompatscher, Michael},
  title =	{{The Subpower Membership Problem of 2-Nilpotent Algebras}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{46:1--46:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.46},
  URN =		{urn:nbn:de:0030-drops-197562},
  doi =		{10.4230/LIPIcs.STACS.2024.46},
  annote =	{Keywords: subpower membership problem, Mal'tsev algebra, compact representation, nilpotence, clonoids}
}
Document
On the Complexity Dichotomy for the Satisfiability of Systems of Term Equations over Finite Algebras

Authors: Peter Mayr

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
For a fixed finite algebra 𝐀, we consider the decision problem SysTerm(𝐀): does a given system of term equations have a solution in 𝐀? This is equivalent to a constraint satisfaction problem (CSP) for a relational structure whose relations are the graphs of the basic operations of 𝐀. From the complexity dichotomy for CSP over fixed finite templates due to Bulatov [Bulatov, 2017] and Zhuk [Zhuk, 2017], it follows that SysTerm(𝐀) for a finite algebra 𝐀 is in P if 𝐀 has a not necessarily idempotent Taylor polymorphism and is NP-complete otherwise. More explicitly, we show that for a finite algebra 𝐀 in a congruence modular variety (e.g. for a quasigroup), SysTerm(𝐀) is in P if the core of 𝐀 is abelian and is NP-complete otherwise. Given 𝐀 by the graphs of its basic operations, we show that this condition for tractability can be decided in quasi-polynomial time.

Cite as

Peter Mayr. On the Complexity Dichotomy for the Satisfiability of Systems of Term Equations over Finite Algebras. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 66:1-66:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{mayr:LIPIcs.MFCS.2023.66,
  author =	{Mayr, Peter},
  title =	{{On the Complexity Dichotomy for the Satisfiability of Systems of Term Equations over Finite Algebras}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{66:1--66:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.66},
  URN =		{urn:nbn:de:0030-drops-186007},
  doi =		{10.4230/LIPIcs.MFCS.2023.66},
  annote =	{Keywords: systems of equations, general algebras, constraint satisfaction}
}
Document
Quantified Constraint Satisfaction on Monoids

Authors: Hubie Chen and Peter Mayr

Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)


Abstract
We contribute to a research program that aims to classify, for each finite structure, the computational complexity of the quantified constraint satisfaction problem on the structure. Employing an established algebraic viewpoint to studying this problem family, whereby this classification program can be phrased as a classification of algebras, we give a complete classification of all finite monoids.

Cite as

Hubie Chen and Peter Mayr. Quantified Constraint Satisfaction on Monoids. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CSL.2016.15,
  author =	{Chen, Hubie and Mayr, Peter},
  title =	{{Quantified Constraint Satisfaction on Monoids}},
  booktitle =	{25th EACSL Annual Conference on Computer Science Logic (CSL 2016)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-022-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{62},
  editor =	{Talbot, Jean-Marc and Regnier, Laurent},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.15},
  URN =		{urn:nbn:de:0030-drops-65553},
  doi =		{10.4230/LIPIcs.CSL.2016.15},
  annote =	{Keywords: quantified constraint satisfaction, universal algebra, computational complexity}
}
Document
Invited Talk
Parallel Algorithms Reconsidered (Invited Talk)

Authors: Peter Sanders

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
Parallel algorithms have been a subject of intensive algorithmic research in the 1980s. This research almost died out in the mid 1990s. In this paper we argue that it is high time to reconsider this subject since a lot of things have changed. First and foremost, parallel processing has moved from a niche application to something mandatory for any performance critical computer applications. We will also point out that even very fundamental results can still be obtained. We give examples and also formulate some open problems.

Cite as

Peter Sanders. Parallel Algorithms Reconsidered (Invited Talk). In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 10-18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{sanders:LIPIcs.STACS.2015.10,
  author =	{Sanders, Peter},
  title =	{{Parallel Algorithms Reconsidered}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{10--18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.10},
  URN =		{urn:nbn:de:0030-drops-49572},
  doi =		{10.4230/LIPIcs.STACS.2015.10},
  annote =	{Keywords: parallel algorithm, algorithm engineering, communication efficient algorithm, polylogarithmic time algorithm, parallel machine model}
}
Document
Automorphism Groups of Geometrically Represented Graphs

Authors: Pavel Klavík­ and Peter Zeman

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
Interval graphs are intersection graphs of closed intervals and circle graphs are intersection graphs of chords of a circle. We study automorphism groups of these graphs. We show that interval graphs have the same automorphism groups as trees, and circle graphs have the same as pseudoforests, which are graphs with at most one cycle in every connected component. Our technique determines automorphism groups for classes with a strong structure of all geometric representations, and it can be applied to other graph classes. Our results imply polynomial-time algorithms for computing automorphism groups in term of group products.

Cite as

Pavel Klavík­ and Peter Zeman. Automorphism Groups of Geometrically Represented Graphs. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 540-553, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{klavik_et_al:LIPIcs.STACS.2015.540,
  author =	{Klav{\'\i}k­, Pavel and Zeman, Peter},
  title =	{{Automorphism Groups of Geometrically Represented Graphs}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{540--553},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.540},
  URN =		{urn:nbn:de:0030-drops-49408},
  doi =		{10.4230/LIPIcs.STACS.2015.540},
  annote =	{Keywords: automorphism group, geometric intersection graph, interval graph, circle graph}
}
  • Refine by Author
  • 2 Mayr, Peter
  • 1 Antoniadis, Antonios
  • 1 Barcelo, Neal
  • 1 Bateni, MohammadHossein
  • 1 Cai, Shaowei
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Models of computation
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Parallel algorithms
  • 1 Information systems → Database design and models
  • Show More...

  • Refine by Keyword
  • 2 constraint satisfaction
  • 1 CC
  • 1 Clustering
  • 1 Computational Game Theory
  • 1 Computational geometry
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 11 2024
  • 2 2014
  • 2 2015
  • 1 2016
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail