7 Search Results for "Monien, Burkhard"


Document
Scheduling with Locality by Routing

Authors: Alison Hsiang-Hsuan Liu and Fu-Hong Liu

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
This work examines a strongly NP-hard routing problem on trees, in which multiple servers need to serve a given set of requests (on vertices), where the routes of the servers start from a common source and end at their respective terminals. Each server can travel free of cost on its source-to-terminal path but has to pay for travel on other edges. The objective is to minimize the maximum cost over all servers. As the servers may pay different costs for traveling through a common edge, balancing the loads of the servers can be difficult. We propose a polynomial-time 4-approximation algorithm that applies the parametric pruning framework but consists of two phases. The first phase of the algorithm partitions the requests into packets, and the second phase of the algorithm assigns the packets to the servers. Unlike the standard parametric pruning techniques, the challenge of our algorithm design and analysis is to harmoniously relate the quality of the partition in the first phase, the balances of the servers' loads in the second phase, and the hypothetical optimal values of the framework. For the problem in general graphs, we show that there is no algorithm better than 2-approximate unless P = NP. The problem is a generalization of unrelated machine scheduling and other classic scheduling problems. It also models scheduling problems where the job processing times depend on the machine serving the job and the other jobs served by that machine. This modeling provides a framework that physicalizes scheduling problems through the graph’s point of view.

Cite as

Alison Hsiang-Hsuan Liu and Fu-Hong Liu. Scheduling with Locality by Routing. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 69:1-69:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.MFCS.2024.69,
  author =	{Liu, Alison Hsiang-Hsuan and Liu, Fu-Hong},
  title =	{{Scheduling with Locality by Routing}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{69:1--69:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.69},
  URN =		{urn:nbn:de:0030-drops-206250},
  doi =		{10.4230/LIPIcs.MFCS.2024.69},
  annote =	{Keywords: Makespan minimization, Approximation algorithms, Routing problems, Parametric pruning framework}
}
Document
Local Enumeration and Majority Lower Bounds

Authors: Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard. Local Enumeration and Majority Lower Bounds. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.CCC.2024.17,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Pudl\'{a}k, Pavel and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration and Majority Lower Bounds}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.17},
  URN =		{urn:nbn:de:0030-drops-204136},
  doi =		{10.4230/LIPIcs.CCC.2024.17},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs

Authors: Daniel Hambly, Rhyd Lewis, and Padraig Corcoran

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In this paper, we examine the NP-hard problem of identifying fixed-length s-t paths in edge-weighted graphs - that is, a path of a desired length k from a source vertex s to a target vertex t. Many existing strategies look at paths whose lengths are determined by the number of edges in the path. We, however, look at the length of the path as the sum of the edge weights. Here, three exact algorithms for this problem are proposed: the first based on an integer programming (IP) formulation, the second a backtracking algorithm, and the third based on an extension of Yen’s algorithm. Analysis of these algorithms on random graphs shows that the backtracking algorithm performs best on smaller values of k, whilst the IP is preferable for larger values of k.

Cite as

Daniel Hambly, Rhyd Lewis, and Padraig Corcoran. Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 15:1-15:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hambly_et_al:LIPIcs.SEA.2024.15,
  author =	{Hambly, Daniel and Lewis, Rhyd and Corcoran, Padraig},
  title =	{{Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{15:1--15:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.15},
  URN =		{urn:nbn:de:0030-drops-203805},
  doi =		{10.4230/LIPIcs.SEA.2024.15},
  annote =	{Keywords: Graphs, paths, backtracking, integer programming, Yen’s algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters

Authors: Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to determine if there exists a homomorphism from an instance graph G to H. We study the complexity of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a linear ordering v_1,…,v_n of V(G) such that, for each i ∈ {1,…,n-1}, the number of edges with one endpoint in {v_1,…,v_i} and the other in {v_{i+1},…,v_n} is at most k. We aim, for each H, for algorithms for Hom(H) running in time c_H^k n^𝒪(1) and matching lower bounds that exclude c_H^{k⋅o(1)} n^𝒪(1) or c_H^{k(1-Ω(1))} n^𝒪(1) time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main contribution is strong evidence of a close connection between c_H and mimsup(H): - an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most mimsup(H)^k, - lower bounds that show that for almost all graphs H indeed we have c_H ≥ mimsup(H), assuming the (Strong) Exponential-Time Hypothesis, and - an algorithm with running time exp(𝒪(mimsup(H)⋅k log k)) n^𝒪(1). In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter tractable, when parameterized by cutwidth of G and mimsup(H). The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching number in the graph obtained by multiplying p copies of H via a certain graph product, where p tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of H. Such parameters play a central role in, among others, algebraic complexity theory and additive combinatorics. Our results tightly link the parameterized complexity of a problem to such an asymptotic matrix parameter for the first time.

Cite as

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski. Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 77:1-77:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{groenland_et_al:LIPIcs.ICALP.2024.77,
  author =	{Groenland, Carla and Mannens, Isja and Nederlof, Jesper and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{77:1--77:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.77},
  URN =		{urn:nbn:de:0030-drops-202208},
  doi =		{10.4230/LIPIcs.ICALP.2024.77},
  annote =	{Keywords: graph homomorphism, cutwidth, asymptotic matrix parameters}
}
Document
Track A: Algorithms, Complexity and Games
The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5

Authors: Sophia Heimann, Hung P. Hoang, and Stefan Hougardy

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The k-Opt algorithm is a local search algorithm for the Traveling Salesman Problem. Starting with an initial tour, it iteratively replaces at most k edges in the tour with the same number of edges to obtain a better tour. Krentel (FOCS 1989) showed that the Traveling Salesman Problem with the k-Opt neighborhood is complete for the class PLS (polynomial time local search) and that the k-Opt algorithm can have exponential running time for any pivot rule. However, his proof requires k ≫ 1000 and has a substantial gap. We show the two properties above for a much smaller value of k, addressing an open question by Monien, Dumrauf, and Tscheuschner (ICALP 2010). In particular, we prove the PLS-completeness for k ≥ 17 and the exponential running time for k ≥ 5.

Cite as

Sophia Heimann, Hung P. Hoang, and Stefan Hougardy. The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 84:1-84:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heimann_et_al:LIPIcs.ICALP.2024.84,
  author =	{Heimann, Sophia and Hoang, Hung P. and Hougardy, Stefan},
  title =	{{The k-Opt Algorithm for the Traveling Salesman Problem Has Exponential Running Time for k ≥ 5}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{84:1--84:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.84},
  URN =		{urn:nbn:de:0030-drops-202270},
  doi =		{10.4230/LIPIcs.ICALP.2024.84},
  annote =	{Keywords: Traveling Salesman Problem, k-Opt algorithm, PLS-completeness}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Structure of Trees in the Pushdown Hierarchy

Authors: Arnaud Carayol and Lucien Charamond

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this article, we investigate the structure of the trees in the pushdown hierarchy, a hierarchy of infinite graphs having a decidable MSO-theory. We show that a binary complete tree in the pushdown hierarchy must contain at least two different subtrees which are isomorphic. We extend this property to any tree with no leaves and with chains of unary vertices of bounded length. We provided two applications of this result. A first application in formal language theory, gives a simple argument to show that some languages are not deterministic higher-order indexed languages. A second application in number theory shows that the real numbers defined by deterministic higher-order pushdown automata are either rational or transcendental.

Cite as

Arnaud Carayol and Lucien Charamond. The Structure of Trees in the Pushdown Hierarchy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 131:1-131:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carayol_et_al:LIPIcs.ICALP.2024.131,
  author =	{Carayol, Arnaud and Charamond, Lucien},
  title =	{{The Structure of Trees in the Pushdown Hierarchy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{131:1--131:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.131},
  URN =		{urn:nbn:de:0030-drops-202749},
  doi =		{10.4230/LIPIcs.ICALP.2024.131},
  annote =	{Keywords: Pushdown hierarchy, Monadic second-order logic, Automatic numbers}
}
Document
The Price of Anarchy for Polynomial Social Cost

Authors: Martin Gairing, Thomas Lücking, Marios Mavronicolas, and Burkhard Monien

Published in: Dagstuhl Seminar Proceedings, Volume 5011, Computing and Markets (2005)


Abstract
In this work, we consider an interesting variant of the well-studied KP model [KP99] for selfish routing that reflects some influence from the much older Wardrop [War52]. In the new model, user traffics are still unsplittable, while social cost is now the expectation of the sum, over all links, of a certain polynomial evaluated at the total latency incurred by all users choosing the link; we call it polynomial social cost. The polynomials that we consider have non-negative coefficients. We are interested in evaluating Nash equilibria in this model, and we use the Price of Anarchy as our evaluation measure. We prove the Fully Mixed Nash Equilibrium Conjecture for identical users and two links, and establish an approximate version of the conjecture for arbitrary many links. Moreover, we give upper bounds on the Price of Anarchy.

Cite as

Martin Gairing, Thomas Lücking, Marios Mavronicolas, and Burkhard Monien. The Price of Anarchy for Polynomial Social Cost. In Computing and Markets. Dagstuhl Seminar Proceedings, Volume 5011, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{gairing_et_al:DagSemProc.05011.19,
  author =	{Gairing, Martin and L\"{u}cking, Thomas and Mavronicolas, Marios and Monien, Burkhard},
  title =	{{The Price of Anarchy for Polynomial Social Cost}},
  booktitle =	{Computing and Markets},
  pages =	{1--12},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{5011},
  editor =	{Daniel Lehmann and Rudolf M\"{u}ller and Tuomas Sandholm},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05011.19},
  URN =		{urn:nbn:de:0030-drops-2005},
  doi =		{10.4230/DagSemProc.05011.19},
  annote =	{Keywords: selfish routing , KP-model , price of anarchy , fully mixed Nash Equilibrium}
}
  • Refine by Author
  • 1 Carayol, Arnaud
  • 1 Charamond, Lucien
  • 1 Corcoran, Padraig
  • 1 Gairing, Martin
  • 1 Groenland, Carla
  • Show More...

  • Refine by Classification
  • 1 Information systems → Fixed length attributes
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Automata over infinite objects
  • 1 Theory of computation → Backtracking
  • Show More...

  • Refine by Keyword
  • 1 Approximation algorithms
  • 1 Automatic numbers
  • 1 Circuit lower bounds
  • 1 Depth 3 circuits
  • 1 Graphs
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 6 2024
  • 1 2005

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail