2 Search Results for "Montacute, Yoàv"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Dynamic Cantor Derivative Logic

Authors: David Fernández-Duque and Yoàv Montacute

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics have not previously been studied in the framework of dynamical systems, which are pairs (X,f) consisting of a topological space X equipped with a continuous function f: X → X. We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke model property and are sound and complete with respect to the d-semantics in this dynamical setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems, K4C is the d-logic of all T_D dynamic topological systems, and GLC is the d-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where f is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems wK4H, K4H and GLH. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological d-logics. Furthermore, our result for GLC constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation - something known to be impossible over the class of all spaces.

Cite as

David Fernández-Duque and Yoàv Montacute. Dynamic Cantor Derivative Logic. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fernandezduque_et_al:LIPIcs.CSL.2022.19,
  author =	{Fern\'{a}ndez-Duque, David and Montacute, Yo\`{a}v},
  title =	{{Dynamic Cantor Derivative Logic}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.19},
  URN =		{urn:nbn:de:0030-drops-157397},
  doi =		{10.4230/LIPIcs.CSL.2022.19},
  annote =	{Keywords: dynamic topological logic, Cantor derivative, temporal logic, modal logic}
}
  • Refine by Author
  • 1 Fernández-Duque, David
  • 1 Montacute, Yoàv
  • 1 Scheidt, Benjamin

  • Refine by Classification
  • 1 Mathematics of computing → Hypergraphs
  • 1 Theory of computation → Finite Model Theory
  • 1 Theory of computation → Modal and temporal logics

  • Refine by Keyword
  • 1 Cantor derivative
  • 1 counting logics
  • 1 dynamic topological logic
  • 1 elimination forest
  • 1 guarded logics
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail