117 Search Results for "Mutzel, Petra"


Volume

LIPIcs, Volume 204

29th Annual European Symposium on Algorithms (ESA 2021)

ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference)

Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman

Artifact
Software
PACE2024

Authors: Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt


Abstract

Cite as

Michael Jünger, Paul J. Jünger, Petra Mutzel, Gerhard Reinelt. PACE2024 (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@misc{GitHub_OSCM_2024,
   title = {{PACE2024}}, 
   author = {J\"{u}nger, Michael and J\"{u}nger, Paul J. and Mutzel, Petra and Reinelt, Gerhard},
   note = {Software, version 1.0. (visited on 2024-12-05)},
   url = {https://github.com/pauljngr/PACE2024},
   doi = {10.4230/artifacts.22523},
}
Document
PACE Solver Description
PACE Solver Description: Exact Solution of the One-Sided Crossing Minimization Problem by the MPPEG Team

Authors: Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt

Published in: LIPIcs, Volume 321, 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)


Abstract
This is a short description of our solver oscm submitted by our team MPPEG to the PACE 2024 challenge both for the exact track and the parameterized track, available at https://github.com/pauljngr/PACE2024 [Jünger et al., 2024] and https://doi.org/10.5281/zenodo.11546972 [Jünger et al., 2024].

Cite as

Michael Jünger, Paul J. Jünger, Petra Mutzel, and Gerhard Reinelt. PACE Solver Description: Exact Solution of the One-Sided Crossing Minimization Problem by the MPPEG Team. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 27:1-27:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{junger_et_al:LIPIcs.IPEC.2024.27,
  author =	{J\"{u}nger, Michael and J\"{u}nger, Paul J. and Mutzel, Petra and Reinelt, Gerhard},
  title =	{{PACE Solver Description: Exact Solution of the One-Sided Crossing Minimization Problem by the MPPEG Team}},
  booktitle =	{19th International Symposium on Parameterized and Exact Computation (IPEC 2024)},
  pages =	{27:1--27:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-353-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{321},
  editor =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024.27},
  URN =		{urn:nbn:de:0030-drops-222539},
  doi =		{10.4230/LIPIcs.IPEC.2024.27},
  annote =	{Keywords: Combinatorial Optimization, Linear Ordering, Crossing Minimization, Branch and Cut, Algorithm Engineering}
}
Document
Storylines with a Protagonist

Authors: Tim Hegemann and Alexander Wolff

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Storyline visualizations show interactions between a given set of characters over time. Each character is represented by an x-monotone curve. A meeting is represented by a vertical bar that is crossed by the curves of exactly those characters that participate in the meeting. Therefore, character curves may have to cross each other. In the context of publication networks, we consider storylines where the characters are authors and the meetings are joint publications. We are especially interested in visualizing a group of colleagues centered around an author, the protagonist, who participates in all selected publications. For such instances, we propose a drawing style where the protagonist’s curve is drawn at a prominent position and never crossed by any other author’s curve. We consider two variants of storylines with a protagonist. In the one-sided variant, the protagonist is required to be drawn at the top position. In this restricted setting, we can efficiently compute a drawing with the minimum number of pairwise crossings, whereas we show that it is NP-hard to minimize the number of block crossings (i.e., pairs of blocks of parallel curves that intersect each other). In the two-sided variant, the task is to split the set of co-authors of the protagonist into two groups, and to place the curves of one group above and the curves of the other group below the protagonist’s curve such that the total number of (block) crossings is minimized. As our main result, we present an algorithm for bundling a sequence of pairwise crossings into a sequence of few block crossings (in the absence of meetings). It exploits a connection to a rectangle dissection problem. In the presence of meetings, it yields results that are very close to a lower bound. Based on this bundling algorithm and our exact algorithm for the one-sided variant, we present a new heuristic for computing two-sided storylines with few block crossings. We perform an extensive experimental study using publication data of 81 protagonists from GD 2023 and their most frequent collaborators over the last ten years. Our study shows that, for two-sided storylines with a protagonist, our new heuristic uses fewer block crossings (and fewer pairwise crossings) than two heuristics for block crossing minimization in general storylines.

Cite as

Tim Hegemann and Alexander Wolff. Storylines with a Protagonist. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hegemann_et_al:LIPIcs.GD.2024.26,
  author =	{Hegemann, Tim and Wolff, Alexander},
  title =	{{Storylines with a Protagonist}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.26},
  URN =		{urn:nbn:de:0030-drops-213109},
  doi =		{10.4230/LIPIcs.GD.2024.26},
  annote =	{Keywords: Storyline visualization, storyline with a protagonist, crossing minimization, block crossings}
}
Document
Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings

Authors: Alexander Dobler, Michael Jünger, Paul J. Jünger, Julian Meffert, Petra Mutzel, and Martin Nöllenburg

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Storyline drawings are a popular visualization of interactions of a set of characters over time, e.g., to show participants of scenes in a book or movie. Characters are represented as x-monotone curves that converge vertically for interactions and diverge otherwise. Combinatorially, the task of computing storyline drawings reduces to finding a sequence of permutations of the character curves for the different time points, with the primary objective being crossing minimization of the induced character trajectories. In this paper, we revisit exact integer linear programming (ILP) approaches for this NP-hard problem. By enriching previous formulations with additional problem-specific insights and new heuristics, we obtain exact solutions for an extended new benchmark set of larger and more complex instances than had been used before. Our experiments show that our enriched formulations lead to better performing algorithms when compared to state-of-the–art modelling techniques. In particular, our best algorithms are on average 2.6-3.2 times faster than the state-of-the-art and succeed in solving complex instances that could not be solved before within the given time limit. Further, we show in an ablation study that our enrichment components contribute considerably to the performance of the new ILP formulation.

Cite as

Alexander Dobler, Michael Jünger, Paul J. Jünger, Julian Meffert, Petra Mutzel, and Martin Nöllenburg. Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dobler_et_al:LIPIcs.GD.2024.31,
  author =	{Dobler, Alexander and J\"{u}nger, Michael and J\"{u}nger, Paul J. and Meffert, Julian and Mutzel, Petra and N\"{o}llenburg, Martin},
  title =	{{Revisiting ILP Models for Exact Crossing Minimization in Storyline Drawings}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{31:1--31:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.31},
  URN =		{urn:nbn:de:0030-drops-213159},
  doi =		{10.4230/LIPIcs.GD.2024.31},
  annote =	{Keywords: Storyline drawing, crossing minimization, integer linear programming, algorithm engineering, computational experiments}
}
Document
SAT Encoding of Partial Ordering Models for Graph Coloring Problems

Authors: Daniel Faber, Adalat Jabrayilov, and Petra Mutzel

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
In this paper, we revisit SAT encodings of the partial-ordering based ILP model for the graph coloring problem (GCP) and suggest a generalization for the bandwidth coloring problem (BCP). The GCP asks for the minimum number of colors that can be assigned to the vertices of a given graph such that each two adjacent vertices get different colors. The BCP is a generalization, where each edge has a weight that enforces a minimal "distance" between the assigned colors, and the goal is to minimize the "largest" color used. For the widely studied GCP, we experimentally compare the partial-ordering based SAT encoding to the state-of-the-art approaches on the DIMACS benchmark set. Our evaluation confirms that this SAT encoding is effective for sparse graphs and even outperforms the state-of-the-art on some DIMACS instances. For the BCP, our theoretical analysis shows that the partial-ordering based SAT and ILP formulations have an asymptotically smaller size than that of the classical assignment-based model. Our practical evaluation confirms not only a dominance compared to the assignment-based encodings but also to the state-of-the-art approaches on a set of benchmark instances. Up to our knowledge, we have solved several open instances of the BCP from the literature for the first time.

Cite as

Daniel Faber, Adalat Jabrayilov, and Petra Mutzel. SAT Encoding of Partial Ordering Models for Graph Coloring Problems. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{faber_et_al:LIPIcs.SAT.2024.12,
  author =	{Faber, Daniel and Jabrayilov, Adalat and Mutzel, Petra},
  title =	{{SAT Encoding of Partial Ordering Models for Graph Coloring Problems}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.12},
  URN =		{urn:nbn:de:0030-drops-205340},
  doi =		{10.4230/LIPIcs.SAT.2024.12},
  annote =	{Keywords: Graph coloring, bandwidth coloring, SAT encodings, ILP formulations}
}
Document
Separator Based Data Reduction for the Maximum Cut Problem

Authors: Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Preprocessing is an important ingredient for solving the maximum cut problem to optimality on real-world graphs. In our work, we derive a new framework for data reduction rules based on vertex separators. Vertex separators are sets of vertices, whose removal increases the number of connected components of a graph. Certain small separators can be found in linear time, allowing for an efficient combination of our framework with existing data reduction rules. Additionally, we complement known data reduction rules for triangles with a new one. In our computational experiments on established benchmark instances, we clearly show the effectiveness and efficiency of our proposed data reduction techniques. The resulting graphs are significantly smaller than in earlier studies and sometimes no vertex is left, so preprocessing has fully solved the instance to optimality. The introduced techniques are also shown to offer significant speedup potential for an exact state-of-the-art solver and to help a state-of-the-art heuristic to produce solutions of higher quality.

Cite as

Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann. Separator Based Data Reduction for the Maximum Cut Problem. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charfreitag_et_al:LIPIcs.SEA.2024.4,
  author =	{Charfreitag, Jonas and Dahn, Christine and Kaibel, Michael and Mayer, Philip and Mutzel, Petra and Sch\"{u}rmann, Lukas},
  title =	{{Separator Based Data Reduction for the Maximum Cut Problem}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.4},
  URN =		{urn:nbn:de:0030-drops-203698},
  doi =		{10.4230/LIPIcs.SEA.2024.4},
  annote =	{Keywords: Data Reduction, Maximum Cut, Vertex Separators}
}
Document
Engineering A* Search for the Flip Distance of Plane Triangulations

Authors: Philip Mayer and Petra Mutzel

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The flip distance for two triangulations of a point set is defined as the smallest number of edge flips needed to transform one triangulation into another, where an edge flip is the act of replacing an edge of a triangulation by a different edge such that the result remains a triangulation. We adapt and engineer a sophisticated A* search algorithm acting on the so-called flip graph. In particular, we prove that previously proposed lower bounds for the flip distance form consistent heuristics for A* and show that they can be computed efficiently using dynamic algorithms. As an alternative approach, we present an integer linear program (ILP) for the flip distance problem. We experimentally evaluate our approaches on a new real-world benchmark data set based on an application in geodesy, namely sea surface reconstruction. Our evaluation reveals that A* search consistently outperforms our ILP formulation as well as a naive baseline, which is bidirectional breadth-first search. In particular, the runtime of our approach improves upon the baseline by more than two orders of magnitude. Furthermore, our A* search successfully solves most of the considered sea surface instances with up to 41 points. This is a substantial improvement compared to the baseline, which struggles with subsets of the real-world data of size 25. Lastly, to allow the consideration of global sea level data, we developed a decomposition-based heuristic for the flip distance. In our experiments it yields optimal flip distance values for most of the considered sea level data and it can be applied to large data sets due to its fast runtime.

Cite as

Philip Mayer and Petra Mutzel. Engineering A* Search for the Flip Distance of Plane Triangulations. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mayer_et_al:LIPIcs.SEA.2024.23,
  author =	{Mayer, Philip and Mutzel, Petra},
  title =	{{Engineering A* Search for the Flip Distance of Plane Triangulations}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.23},
  URN =		{urn:nbn:de:0030-drops-203887},
  doi =		{10.4230/LIPIcs.SEA.2024.23},
  annote =	{Keywords: Computational Geometry, Triangulations, Flip Distance, A-star Search, Integer Linear Programming}
}
Document
Minimum-Error Triangulations for Sea Surface Reconstruction

Authors: Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We apply state-of-the-art computational geometry methods to the problem of reconstructing a time-varying sea surface from tide gauge records. Our work builds on a recent article by Nitzke et al. (Computers & Geosciences, 157:104920, 2021) who have suggested to learn a triangulation D of a given set of tide gauge stations. The objective is to minimize the misfit of the piecewise linear surface induced by D to a reference surface that has been acquired with satellite altimetry. The authors restricted their search to k-order Delaunay (k-OD) triangulations and used an integer linear program in order to solve the resulting optimization problem. In geometric terms, the input to our problem consists of two sets of points in ℝ² with elevations: a set 𝒮 that is to be triangulated, and a set ℛ of reference points. Intuitively, we define the error of a triangulation as the average vertical distance of a point in ℛ to the triangulated surface that is obtained by interpolating elevations of 𝒮 linearly in each triangle. Our goal is to find the triangulation of 𝒮 that has minimum error with respect to ℛ. In our work, we prove that the minimum-error triangulation problem is NP-hard and cannot be approximated within any multiplicative factor in polynomial time unless P = NP. At the same time we show that the problem instances that occur in our application (considering sea level data from several hundreds of tide gauge stations worldwide) can be solved relatively fast using dynamic programming when restricted to k-OD triangulations for k ≤ 7. In particular, instances for which the number of connected components of the so-called k-OD fixed-edge graph is small can be solved within few seconds.

Cite as

Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin. Minimum-Error Triangulations for Sea Surface Reconstruction. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arutyunova_et_al:LIPIcs.SoCG.2022.7,
  author =	{Arutyunova, Anna and Driemel, Anne and Haunert, Jan-Henrik and Haverkort, Herman and Kusche, J\"{u}rgen and Langetepe, Elmar and Mayer, Philip and Mutzel, Petra and R\"{o}glin, Heiko},
  title =	{{Minimum-Error Triangulations for Sea Surface Reconstruction}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.7},
  URN =		{urn:nbn:de:0030-drops-160155},
  doi =		{10.4230/LIPIcs.SoCG.2022.7},
  annote =	{Keywords: Minimum-Error Triangulation, k-Order Delaunay Triangulations, Data dependent Triangulations, Sea Surface Reconstruction, fixed-Edge Graph}
}
Document
On the Discrete Fréchet Distance in a Graph

Authors: Anne Driemel, Ivor van der Hoog, and Eva Rotenberg

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
The Fréchet distance is a well-studied similarity measure between curves that is widely used throughout computer science. Motivated by applications where curves stem from paths and walks on an underlying graph (such as a road network), we define and study the Fréchet distance for paths and walks on graphs. When provided with a distance oracle of G with O(1) query time, the classical quadratic-time dynamic program can compute the Fréchet distance between two walks P and Q in a graph G in O(|P|⋅|Q|) time. We show that there are situations where the graph structure helps with computing Fréchet distance: when the graph G is planar, we apply existing (approximate) distance oracles to compute a (1+ε)-approximation of the Fréchet distance between any shortest path P and any walk Q in O(|G|log|G|/√ε+|P|+|Q|/ε) time. We generalise this result to near-shortest paths, i.e. κ-straight paths, as we show how to compute a (1+ε)-approximation between a κ-straight path P and any walk Q in O(|G|log|G|/√ε+|P|+(κ|Q|)/ε) time. Our algorithmic results hold for both the strong and the weak discrete Fréchet distance over the shortest path metric in G. Finally, we show that additional assumptions on the input, such as our assumption on path straightness, are indeed necessary to obtain truly subquadratic running time. We provide a conditional lower bound showing that the Fréchet distance, or even its 1.01-approximation, between arbitrary paths in a weighted planar graph cannot be computed in O((|P|⋅|Q|)^{1-δ}) time for any δ > 0 unless the Orthogonal Vector Hypothesis fails. For walks, this lower bound holds even when G is planar, unit-weight and has O(1) vertices.

Cite as

Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the Discrete Fréchet Distance in a Graph. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{driemel_et_al:LIPIcs.SoCG.2022.36,
  author =	{Driemel, Anne and van der Hoog, Ivor and Rotenberg, Eva},
  title =	{{On the Discrete Fr\'{e}chet Distance in a Graph}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.36},
  URN =		{urn:nbn:de:0030-drops-160448},
  doi =		{10.4230/LIPIcs.SoCG.2022.36},
  annote =	{Keywords: Fr\'{e}chet, graphs, planar, complexity analysis}
}
Document
Complete Volume
LIPIcs, Volume 204, ESA 2021, Complete Volume

Authors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
LIPIcs, Volume 204, ESA 2021, Complete Volume

Cite as

29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 1-1340, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{mutzel_et_al:LIPIcs.ESA.2021,
  title =	{{LIPIcs, Volume 204, ESA 2021, Complete Volume}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{1--1340},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021},
  URN =		{urn:nbn:de:0030-drops-145808},
  doi =		{10.4230/LIPIcs.ESA.2021},
  annote =	{Keywords: LIPIcs, Volume 204, ESA 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mutzel_et_al:LIPIcs.ESA.2021.0,
  author =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.0},
  URN =		{urn:nbn:de:0030-drops-145816},
  doi =		{10.4230/LIPIcs.ESA.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Network Planning and Routing Problems over Time: Models, Complexity and Algorithms (Invited Talk)

Authors: Lukas Glomb, Benno Hoch, Frauke Liers, and Florian Rösel

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In this invited contribution for ESA 2021, we will study the complexity of and algorithms for network optimization tasks with a timing component. They occur, for example, in planning or routing problems that need to be solved repeatedly over time. Typically, already simplified versions of such problems are NP-hard. In addition, the instances typically are too large to be solved straight-forwardly on a time-expanded graph. After an introduction into the area, we state the problem of determining best possible non-stop trajectories in a network that are not allowed to cross at any point in time. For simplified settings, polynomial-time solution approaches are presented whereas already for restricted settings the problems are shown to be NP-hard. When moving to more complex and more realistic settings as they occur, for example, in determining non-stop disjoint trajectories for a set of aircraft, we present heuristic algorithms that adaptively refine coarse disjoint trajectories in the timing dimension. In order to be able to solve the non-stop disjoint trajectories problem over time, the method is integrated in a rolling-horizon algorithm. We present computational results for realistic settings. Motivated by the fact that rolling-horizon approaches are often applied in practice without knowledge on the quality of the obtained solutions, we study this problem from an abstract point of view. In fact, we more abstractly analyze the solution quality of general rolling-horizon algorithms for optimization tasks that show a timing component. We apply it to different planning problems. We end by pointing out some challenges and possibilities for future research.

Cite as

Lukas Glomb, Benno Hoch, Frauke Liers, and Florian Rösel. Network Planning and Routing Problems over Time: Models, Complexity and Algorithms (Invited Talk). In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 1:1-1:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{glomb_et_al:LIPIcs.ESA.2021.1,
  author =	{Glomb, Lukas and Hoch, Benno and Liers, Frauke and R\"{o}sel, Florian},
  title =	{{Network Planning and Routing Problems over Time: Models, Complexity and Algorithms}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{1:1--1:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.1},
  URN =		{urn:nbn:de:0030-drops-145822},
  doi =		{10.4230/LIPIcs.ESA.2021.1},
  annote =	{Keywords: network problems over time, rolling-horizon, complexity, approximation}
}
Document
Invited Talk
A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk)

Authors: Aaron Roth

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In this talk, we overview a simple and user friendly framework developed in [Noarov et al., 2021] that can be used to derive online learning algorithms in a number of settings. In the core framework, at every round, an adaptive adversary introduces a new game, consisting of an action space for the learner, an action space for the adversary, and a vector valued objective function that is concave-convex in every coordinate. The learner and the adversary then play in this game. The learner’s goal is to play so as to minimize the maximum coordinate of the cumulative vector-valued loss. The resulting one-shot game is not concave-convex, and so the minimax theorem does not apply. Nevertheless we give a simple algorithm that can compete with the setting in which the adversary must announce their action first, with optimally diminishing regret. We demonstrate the power of our simple framework by using it to derive optimal bounds and algorithms across a variety of domains. This includes no regret learning: we can recover optimal algorithms and bounds for minimizing exernal regret, internal regret, adaptive regret, multigroup regret, subsequence regret, and permutation regret in the sleeping experts setting. It also includes (multi)calibration [Hébert-Johnson et al., 2018] and related notions: we are able to recover recently derived algorithms and bounds for online adversarial multicalibration [Gupta et al., 2021], mean conditioned moment multicalibration [Jung et al., 2021], and prediction interval multivalidity [Gupta et al., 2021]. Finally we use it to derive a new variant of Blackwell’s Approachability Theorem, which we term "Fast Polytope Approachability".

Cite as

Aaron Roth. A User Friendly Power Tool for Deriving Online Learning Algorithms (Invited Talk). In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{roth:LIPIcs.ESA.2021.2,
  author =	{Roth, Aaron},
  title =	{{A User Friendly Power Tool for Deriving Online Learning Algorithms}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.2},
  URN =		{urn:nbn:de:0030-drops-145835},
  doi =		{10.4230/LIPIcs.ESA.2021.2},
  annote =	{Keywords: Online Learning, Multicalibration, Multivalidity, Blackwell Approachability}
}
Document
Bi-Objective Search with Bi-Directional A*

Authors: Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Bi-objective search is a well-known algorithmic problem, concerned with finding a set of optimal solutions in a two-dimensional domain. This problem has a wide variety of applications such as planning in transport systems or optimal control in energy systems. Recently, bi-objective A*-based search (BOA*) has shown state-of-the-art performance in large networks. This paper develops a bi-directional and parallel variant of BOA*, enriched with several speed-up heuristics. Our experimental results on 1,000 benchmark cases show that our bi-directional A* algorithm for bi-objective search (BOBA*) can optimally solve all of the benchmark cases within the time limit, outperforming the state of the art BOA*, bi-objective Dijkstra and bi-directional bi-objective Dijkstra by an average runtime improvement of a factor of five over all of the benchmark instances.

Cite as

Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby. Bi-Objective Search with Bi-Directional A*. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ahmadi_et_al:LIPIcs.ESA.2021.3,
  author =	{Ahmadi, Saman and Tack, Guido and Harabor, Daniel and Kilby, Philip},
  title =	{{Bi-Objective Search with Bi-Directional A*}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.3},
  URN =		{urn:nbn:de:0030-drops-145849},
  doi =		{10.4230/LIPIcs.ESA.2021.3},
  annote =	{Keywords: Bi-objective search, heuristic search, shortest path problem}
}
  • Refine by Author
  • 21 Mutzel, Petra
  • 6 Kobourov, Stephen
  • 5 Jünger, Michael
  • 4 Friedrich, Tobias
  • 4 Sanders, Peter
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 7 Graph drawing
  • 6 approximation
  • 4 graphs
  • 3 Graph Drawing
  • 3 approximation algorithm
  • Show More...

  • Refine by Type
  • 115 document
  • 1 artifact
  • 1 volume

  • Refine by Publication Year
  • 85 2021
  • 7 2006
  • 7 2024
  • 6 2008
  • 4 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail