3 Search Results for "Narayanan, Ashvni"


Document
Short Paper
Fermat’s Last Theorem for Regular Primes (Short Paper)

Authors: Alex J. Best, Christopher Birkbeck, Riccardo Brasca, and Eric Rodriguez Boidi

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
We formalise the proof of the first case of Fermat’s Last Theorem for regular primes using the Lean theorem prover and its mathematical library mathlib. This is an important 19th century result that motivated the development of modern algebraic number theory. Besides explaining the mathematics behind this result, we analyze in this paper the difficulties we faced in the formalisation process and how we solved them. For example, we had to deal with a diamond about characteristic zero fields and problems arising from multiple nested coercions related to number fields. We also explain how we integrated our work to mathlib.

Cite as

Alex J. Best, Christopher Birkbeck, Riccardo Brasca, and Eric Rodriguez Boidi. Fermat’s Last Theorem for Regular Primes (Short Paper). In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 36:1-36:8, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{best_et_al:LIPIcs.ITP.2023.36,
  author =	{Best, Alex J. and Birkbeck, Christopher and Brasca, Riccardo and Rodriguez Boidi, Eric},
  title =	{{Fermat’s Last Theorem for Regular Primes}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{36:1--36:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.36},
  URN =		{urn:nbn:de:0030-drops-184115},
  doi =		{10.4230/LIPIcs.ITP.2023.36},
  annote =	{Keywords: Fermat’s Last Theorem, Cyclotomic fields, Interactive theorem proving, Lean}
}
Document
Formalizing the Ring of Adèles of a Global Field

Authors: María Inés de Frutos-Fernández

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
The ring of adèles of a global field and its group of units, the group of idèles, are fundamental objects in modern number theory. We discuss a formalization of their definitions in the Lean 3 theorem prover. As a prerequisite, we formalize adic valuations on Dedekind domains. We present some applications, including the statement of the main theorem of global class field theory and a proof that the ideal class group of a number field is isomorphic to an explicit quotient of its idèle class group.

Cite as

María Inés de Frutos-Fernández. Formalizing the Ring of Adèles of a Global Field. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 14:1-14:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{defrutosfernandez:LIPIcs.ITP.2022.14,
  author =	{de Frutos-Fern\'{a}ndez, Mar{\'\i}a In\'{e}s},
  title =	{{Formalizing the Ring of Ad\`{e}les of a Global Field}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.14},
  URN =		{urn:nbn:de:0030-drops-167232},
  doi =		{10.4230/LIPIcs.ITP.2022.14},
  annote =	{Keywords: formal math, algebraic number theory, class field theory, Lean, mathlib}
}
Document
A Formalization of Dedekind Domains and Class Groups of Global Fields

Authors: Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, and Filippo A. E. Nuccio Mortarino Majno di Capriglio

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
Dedekind domains and their class groups are notions in commutative algebra that are essential in algebraic number theory. We formalized these structures and several fundamental properties, including number theoretic finiteness results for class groups, in the Lean prover as part of the mathlib mathematical library. This paper describes the formalization process, noting the idioms we found useful in our development and mathlib’s decentralized collaboration processes involved in this project.

Cite as

Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, and Filippo A. E. Nuccio Mortarino Majno di Capriglio. A Formalization of Dedekind Domains and Class Groups of Global Fields. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 5:1-5:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baanen_et_al:LIPIcs.ITP.2021.5,
  author =	{Baanen, Anne and Dahmen, Sander R. and Narayanan, Ashvni and Nuccio Mortarino Majno di Capriglio, Filippo A. E.},
  title =	{{A Formalization of Dedekind Domains and Class Groups of Global Fields}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.5},
  URN =		{urn:nbn:de:0030-drops-139004},
  doi =		{10.4230/LIPIcs.ITP.2021.5},
  annote =	{Keywords: formal math, algebraic number theory, commutative algebra, Lean, mathlib}
}
  • Refine by Author
  • 1 Baanen, Anne
  • 1 Best, Alex J.
  • 1 Birkbeck, Christopher
  • 1 Brasca, Riccardo
  • 1 Dahmen, Sander R.
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Mathematical software
  • 1 Computing methodologies → Representation of mathematical objects
  • 1 General and reference → Verification
  • 1 Security and privacy → Logic and verification
  • 1 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 3 Lean
  • 2 algebraic number theory
  • 2 formal math
  • 2 mathlib
  • 1 Cyclotomic fields
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2021
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail