2 Search Results for "Naszódi, Márton"


Document
On Helly Numbers of Exponential Lattices

Authors: Gergely Ambrus, Martin Balko, Nóra Frankl, Attila Jung, and Márton Naszódi

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Given a set S ⊆ ℝ², define the Helly number of S, denoted by H(S), as the smallest positive integer N, if it exists, for which the following statement is true: for any finite family ℱ of convex sets in ℝ² such that the intersection of any N or fewer members of ℱ contains at least one point of S, there is a point of S common to all members of ℱ. We prove that the Helly numbers of exponential lattices {αⁿ : n ∈ ℕ₀}² are finite for every α > 1 and we determine their exact values in some instances. In particular, we obtain H({2ⁿ : n ∈ ℕ₀}²) = 5, solving a problem posed by Dillon (2021). For real numbers α, β > 1, we also fully characterize exponential lattices L(α,β) = {αⁿ : n ∈ ℕ₀} × {βⁿ : n ∈ ℕ₀} with finite Helly numbers by showing that H(L(α,β)) is finite if and only if log_α(β) is rational.

Cite as

Gergely Ambrus, Martin Balko, Nóra Frankl, Attila Jung, and Márton Naszódi. On Helly Numbers of Exponential Lattices. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 8:1-8:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ambrus_et_al:LIPIcs.SoCG.2023.8,
  author =	{Ambrus, Gergely and Balko, Martin and Frankl, N\'{o}ra and Jung, Attila and Nasz\'{o}di, M\'{a}rton},
  title =	{{On Helly Numbers of Exponential Lattices}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.8},
  URN =		{urn:nbn:de:0030-drops-178584},
  doi =		{10.4230/LIPIcs.SoCG.2023.8},
  annote =	{Keywords: Helly numbers, exponential lattices, Diophantine approximation}
}
Document
Approximate CVP_p in Time 2^{0.802 n}

Authors: Friedrich Eisenbrand and Moritz Venzin

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We show that a constant factor approximation of the shortest and closest lattice vector problem w.r.t. any 𝓁_p-norm can be computed in time 2^{(0.802 +ε) n}. This matches the currently fastest constant factor approximation algorithm for the shortest vector problem w.r.t. 𝓁₂. To obtain our result, we combine the latter algorithm w.r.t. 𝓁₂ with geometric insights related to coverings.

Cite as

Friedrich Eisenbrand and Moritz Venzin. Approximate CVP_p in Time 2^{0.802 n}. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 43:1-43:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{eisenbrand_et_al:LIPIcs.ESA.2020.43,
  author =	{Eisenbrand, Friedrich and Venzin, Moritz},
  title =	{{Approximate CVP\underlinep in Time 2^\{0.802 n\}}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{43:1--43:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.43},
  URN =		{urn:nbn:de:0030-drops-129097},
  doi =		{10.4230/LIPIcs.ESA.2020.43},
  annote =	{Keywords: Shortest and closest vector problem, approximation algorithm, sieving, covering convex bodies}
}
  • Refine by Author
  • 1 Ambrus, Gergely
  • 1 Balko, Martin
  • 1 Eisenbrand, Friedrich
  • 1 Frankl, Nóra
  • 1 Jung, Attila
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Randomness, geometry and discrete structures

  • Refine by Keyword
  • 1 Diophantine approximation
  • 1 Helly numbers
  • 1 Shortest and closest vector problem
  • 1 approximation algorithm
  • 1 covering convex bodies
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail