7 Search Results for "Nemitz, Catherine E."


Issue

DARTS, Volume 10, Issue 1

Special Issue of the 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)

Editors: Matthias Becker and Catherine E. Nemitz

Document
Predictable GPU Sharing in Component-Based Real-Time Systems

Authors: Syed W. Ali, Zelin Tong, Joseph Goh, and James H. Anderson

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
This paper presents a real-time locking protocol whose design was motivated by the goal of enabling safe GPU sharing in time-sliced component-based systems. This locking protocol enables a GPU to be shared concurrently across, and utilized within, isolated components with predictable execution times. It relies on a novel resizing technique where GPU work is dimensioned on-the-fly to run on partitions of an NVIDIA GPU. This technique can be applied to any component that internally utilizes global CPU scheduling. The proposed locking protocol enables increased GPU parallelism and reduces GPU capacity loss with analytically provable benefits.

Cite as

Syed W. Ali, Zelin Tong, Joseph Goh, and James H. Anderson. Predictable GPU Sharing in Component-Based Real-Time Systems. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 15:1-15:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ali_et_al:LIPIcs.ECRTS.2024.15,
  author =	{Ali, Syed W. and Tong, Zelin and Goh, Joseph and Anderson, James H.},
  title =	{{Predictable GPU Sharing in Component-Based Real-Time Systems}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{15:1--15:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.15},
  URN =		{urn:nbn:de:0030-drops-203183},
  doi =		{10.4230/LIPIcs.ECRTS.2024.15},
  annote =	{Keywords: GPU locking protocols, real-time locking protocols, priority-inversion blocking, component-based systems}
}
Document
Front Matter
Front Matter, Table of Contents, Artifact Evaluation Process, Artifact Evaluation Committee

Authors: Matthias Becker and Catherine E. Nemitz

Published in: DARTS, Volume 10, Issue 1, Special Issue of the 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Front Matter, Table of Contents, Artifact Evaluation Process, Artifact Evaluation Committee

Cite as

Special Issue of the 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Dagstuhl Artifacts Series (DARTS), Volume 10, Issue 1, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{becker_et_al:DARTS.10.1.0,
  author =	{Becker, Matthias and Nemitz, Catherine E.},
  title =	{{Front Matter, Table of Contents, Artifact Evaluation Process, Artifact Evaluation Committee}},
  pages =	{0:i--0:x},
  journal =	{Dagstuhl Artifacts Series},
  ISBN =	{978-3-95977-327-0},
  ISSN =	{2509-8195},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Becker, Matthias and Nemitz, Catherine E.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.1.0},
  URN =		{urn:nbn:de:0030-drops-203223},
  doi =		{10.4230/DARTS.10.1.0},
  annote =	{Keywords: Front Matter, Table of Contents, Artifact Evaluation Process, Artifact Evaluation Committee}
}
Document
Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads

Authors: Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward

Published in: LIPIcs, Volume 196, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
This paper is directed at reader/writer locking for read-dominant real-time workloads. It is shown that state-of-the-art real-time reader/writer locking protocols are subject to performance limitations when reads dominate, and that existing schedulability analysis fails to leverage the sparsity of writes in this case. A new reader/writer locking-protocol implementation and new inflation-free schedulability analysis are proposed to address these problems. Overhead evaluations of the new implementation show a decrease in overheads of up to 70% over previous implementations, leading to throughput for read operations increasing by up to 450%. Schedulability experiments are presented that show that the analysis results in schedulability improvements of up to 156.8% compared to the existing state-of-the-art approach.

Cite as

Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward. Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 196, pp. 6:1-6:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nemitz_et_al:LIPIcs.ECRTS.2021.6,
  author =	{Nemitz, Catherine E. and Caspin, Shai and Anderson, James H. and Ward, Bryan C.},
  title =	{{Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads}},
  booktitle =	{33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-192-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{196},
  editor =	{Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2021.6},
  URN =		{urn:nbn:de:0030-drops-139378},
  doi =		{10.4230/LIPIcs.ECRTS.2021.6},
  annote =	{Keywords: Reader/writer, real-time, synchronization, spinlock, RMR complexity}
}
Document
Artifact
Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads (Artifact)

Authors: Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward

Published in: DARTS, Volume 7, Issue 1, Special Issue of the 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
This paper is directed at reader/writer locking for read-dominant real-time workloads. It is shown that state-of-the-art real-time reader/writer locking protocols are subject to performance limitations when reads dominate, and that existing schedulability analysis fails to leverage the sparsity of writes in this case. A new reader/writer locking-protocol implementation and new inflation-free schedulability analysis are proposed to address these problems. Overhead evaluations of the new implementation show a decrease in overheads of up to 70% over previous implementations, leading to throughput for read operations increasing by up to 450%. Schedulability experiments are presented that show that the analysis results in schedulability improvements of up to 156.8% compared to the existing state-of-the-art approach.

Cite as

Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward. Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads (Artifact). In Special Issue of the 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Dagstuhl Artifacts Series (DARTS), Volume 7, Issue 1, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Article{nemitz_et_al:DARTS.7.1.3,
  author =	{Nemitz, Catherine E. and Caspin, Shai and Anderson, James H. and Ward, Bryan C.},
  title =	{{Light Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-Time Workloads (Artifact)}},
  pages =	{3:1--3:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2021},
  volume =	{7},
  number =	{1},
  editor =	{Nemitz, Catherine E. and Caspin, Shai and Anderson, James H. and Ward, Bryan C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.7.1.3},
  URN =		{urn:nbn:de:0030-drops-139828},
  doi =		{10.4230/DARTS.7.1.3},
  annote =	{Keywords: Reader/writer, real-time, synchronization, spinlock, RMR complexity}
}
Document
Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts

Authors: Catherine E. Nemitz, Tanya Amert, and James H. Anderson

Published in: LIPIcs, Volume 106, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
During the past decade, parallelism-related issues have been at the forefront of real-time systems research due to the advent of multicore technologies. In the coming years, such issues will loom ever larger due to increasing core counts. Having more cores means a greater potential exists for platform capacity loss when the available parallelism cannot be fully exploited. In this paper, such capacity loss is considered in the context of real-time locking protocols. In this context, lock nesting becomes a key concern as it can result in transitive blocking chains that force tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine. Contention-sensitive real-time locking protocols have been proposed as a means of "breaking" transitive blocking chains, but such protocols tend to have high overhead due to more complicated lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In particular, four specific lock-server paradigms are proposed and many nuances concerning their deployment are explored. Experiments are presented that show that, by executing cache hot, lock servers can enable reductions in lock/unlock overhead of up to 86%. Such reductions make contention-sensitive protocols a viable approach in practice.

Cite as

Catherine E. Nemitz, Tanya Amert, and James H. Anderson. Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 106, pp. 25:1-25:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{nemitz_et_al:LIPIcs.ECRTS.2018.25,
  author =	{Nemitz, Catherine E. and Amert, Tanya and Anderson, James H.},
  title =	{{Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{25:1--25:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.25},
  URN =		{urn:nbn:de:0030-drops-89789},
  doi =		{10.4230/LIPIcs.ECRTS.2018.25},
  annote =	{Keywords: multiprocess locking protocols, nested locks, priority-inversion blocking, reader/writer locks, real-time locking protocols}
}
Document
Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts (Artifact)

Authors: Catherine E. Nemitz, Tanya Amert, and James H. Anderson

Published in: DARTS, Volume 4, Issue 2, Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
During the past decade, parallelism-related issues have been at the forefront of real-time systems research due to the advent of multicore technologies. In the coming years, such issues will loom ever larger due to increasing core counts. Having more cores means a greater potential exists for platform capacity loss when the available parallelism cannot be fully exploited. In this work, such capacity loss is considered in the context of real-time locking protocols. In this context, lock nesting becomes a key concern as it can result in transitive blocking chains that force tasks to execute sequentially unnecessarily. Such chains can be quite long on a larger machine. Contention-sensitive real-time locking protocols have been proposed as a means of ``breaking'' transitive blocking chains, but such protocols tend to have high overhead due to more complicated lock/unlock logic. To ease such overhead, the usage of lock servers is considered herein. In particular, four specific lock-server paradigms are proposed and many nuances concerning their deployment are explored. Experiments are presented that show that, by executing cache hot, lock servers can enable reductions in lock/unlock overhead of up to 86\%. Such reductions make contention-sensitive protocols a viable approach in practice. This artifact contains the implementation of two contention-sensitive locking protocol variants implemented with four proposed lock-server paradigms, as well as the experiments with which they were evaluated.

Cite as

Catherine E. Nemitz, Tanya Amert, and James H. Anderson. Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts (Artifact). In Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl Artifacts Series (DARTS), Volume 4, Issue 2, pp. 2:1-2:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{nemitz_et_al:DARTS.4.2.2,
  author =	{Nemitz, Catherine E. and Amert, Tanya and Anderson, James H.},
  title =	{{Using Lock Servers to Scale Real-Time Locking Protocols: Chasing Ever-Increasing Core Counts (Artifact)}},
  pages =	{2:1--2:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2018},
  volume =	{4},
  number =	{2},
  editor =	{Nemitz, Catherine E. and Amert, Tanya and Anderson, James H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.4.2.2},
  URN =		{urn:nbn:de:0030-drops-89704},
  doi =		{10.4230/DARTS.4.2.2},
  annote =	{Keywords: multiprocess locking protocols, nested locks, priority-inversion blocking, reader/writer locks, real-time locking protocols}
}
  • Refine by Author
  • 5 Anderson, James H.
  • 5 Nemitz, Catherine E.
  • 2 Amert, Tanya
  • 2 Caspin, Shai
  • 2 Ward, Bryan C.
  • Show More...

  • Refine by Classification
  • 2 Computer systems organization → Real-time system architecture
  • 2 Computer systems organization → Real-time systems
  • 2 Computing methodologies → Shared memory algorithms
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Software and its engineering
  • Show More...

  • Refine by Keyword
  • 3 priority-inversion blocking
  • 3 real-time locking protocols
  • 2 RMR complexity
  • 2 Reader/writer
  • 2 multiprocess locking protocols
  • Show More...

  • Refine by Type
  • 6 document
  • 1 issue

  • Refine by Publication Year
  • 3 2024
  • 2 2018
  • 2 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail