14 Search Results for "Parotsidis, Nikos"


Document
Applying the Safe-And-Complete Framework to Practical Genome Assembly

Authors: Sebastian Schmidt, Santeri Toivonen, Paul Medvedev, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Despite the long history of genome assembly research, there remains a large gap between the theoretical and practical work. There is practical software with little theoretical underpinning of accuracy on one hand and theoretical algorithms which have not been adopted in practice on the other. In this paper we attempt to bridge the gap between theory and practice by showing how the theoretical safe-and-complete framework can be integrated into existing assemblers in order to improve contiguity. The optimal algorithm in this framework, called the omnitig algorithm, has not been used in practice due to its complexity and its lack of robustness to real data. Instead, we pursue a simplified notion of omnitigs (simple omnitigs), giving an efficient algorithm to compute them and demonstrating their safety under certain conditions. We modify two assemblers (wtdbg2 and Flye) by replacing their unitig algorithm with the simple omnitig algorithm. We test our modifications using real HiFi data from the D. melanogaster and the C. elegans genomes. Our modified algorithms lead to a substantial improvement in alignment-based contiguity, with negligible additional computational costs and either no or a small increase in the number of misassemblies.

Cite as

Sebastian Schmidt, Santeri Toivonen, Paul Medvedev, and Alexandru I. Tomescu. Applying the Safe-And-Complete Framework to Practical Genome Assembly. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schmidt_et_al:LIPIcs.WABI.2024.8,
  author =	{Schmidt, Sebastian and Toivonen, Santeri and Medvedev, Paul and Tomescu, Alexandru I.},
  title =	{{Applying the Safe-And-Complete Framework to Practical Genome Assembly}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.8},
  URN =		{urn:nbn:de:0030-drops-206520},
  doi =		{10.4230/LIPIcs.WABI.2024.8},
  annote =	{Keywords: Genome assembly, Omnitigs, Safe-and-complete framework, graph algorithm, HiFi sequencing data, Assembly evaluation}
}
Document
Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Authors: Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A classical problem in computational geometry and graph algorithms is: given a dynamic set 𝒮 of geometric shapes in the plane, efficiently maintain the connectivity of the intersection graph of 𝒮. Previous papers studied the setting where, before the updates, the data structure receives some parameter P. Then, updates could insert and delete disks as long as at all times the disks have a diameter that lies in a fixed range [1/P, 1]. As a consequence of that prerequisite, the aspect ratio ψ (i.e. the ratio between the largest and smallest diameter) of the disks would at all times satisfy ψ ≤ P. The state-of-the-art for storing disks in a dynamic connectivity data structure is a data structure that uses O(Pn) space and that has amortized O(P log⁴ n) expected amortized update time. Connectivity queries between disks are supported in O(log n / log log n) time. In the dynamic setting, one wishes for a more flexible data structure in which disks of any diameter may arrive and leave, independent of their diameter, changing the aspect ratio freely. Ideally, the aspect ratio should merely be part of the analysis. We restrict our attention to axis-aligned squares, and study fully-dynamic square intersection graph connectivity. Our result is fully-adaptive to the aspect ratio, spending time proportional to the current aspect ratio ψ, as opposed to some previously given maximum P. Our focus on squares allows us to simplify and streamline the connectivity pipeline from previous work. When n is the number of squares and ψ is the aspect ratio after insertion (or before deletion), our data structure answers connectivity queries in O(log n / log log n) time. We can update connectivity information in O(ψ log⁴ n + log⁶ n) amortized time. We also improve space usage from O(P ⋅ n log n) to O(n log³ n log ψ) - while generalizing to a fully-adaptive aspect ratio - which yields a space usage that is near-linear in n for any polynomially bounded ψ.

Cite as

Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals. Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.MFCS.2024.63,
  author =	{van der Hoog, Ivor and Nusser, Andr\'{e} and Rotenberg, Eva and Staals, Frank},
  title =	{{Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{63:1--63:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.63},
  URN =		{urn:nbn:de:0030-drops-206197},
  doi =		{10.4230/LIPIcs.MFCS.2024.63},
  annote =	{Keywords: Computational geometry, planar geometry, data structures, geometric intersection graphs, fully-dynamic algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles

Authors: Surender Baswana and Koustav Bhanja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Let G be a directed weighted graph on n vertices and m edges with designated source and sink vertices s and t. An edge in G is vital if its removal reduces the capacity of (s,t)-mincut. Since the seminal work of Ford and Fulkerson [CJM 1956], a long line of work has been done on computing the most vital edge and all vital edges of G. However, even after 60 years, the existing results are for either undirected or unweighted graphs. We present the following result for directed weighted graphs that also solves an open problem by Ausiello, Franciosa, Lari, and Ribichini [NETWORKS 2019]. 1. Algorithmic Results: There is an algorithm that computes all vital edges as well as the most vital edge of G using {O}(n) maximum (s,t)-flow computations. Vital edges play a crucial role in the design of sensitivity oracle for (s,t)-mincut - a compact data structure for reporting (s,t)-mincut after insertion/failure of any edge. For directed graphs, the only existing sensitivity oracle is for unweighted graphs by Picard and Queyranne [MPS 1982]. We present the first and optimal sensitivity oracle for directed weighted graphs as follows. 2. Sensitivity Oracles: a) There is an optimal O(n²) space data structure that can report an (s,t)-mincut C in O(|C|) time after the failure/insertion of any edge. b) There is an O(n) space data structure that can report the capacity of (s,t)-mincut after failure or insertion of any edge e in O(1) time if the capacity of edge e is known. A mincut for a vital edge e is an (s,t)-cut of the least capacity in which edge e is outgoing. For unweighted graphs, in a classical work, Picard and Queyranne [MPS 1982] designed an O(m) space directed acyclic graph (DAG) that stores and characterizes all mincuts for all vital edges. Conversely, there is a set containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. We generalize these results for directed weighted graphs as follows. 3. Structural & Combinatorial Results: a) There is a set M containing at most n-1 (s,t)-cuts such that at least one mincut for every vital edge belongs to the set. This bound is tight as well. We also show that set M can be computed using O(n) maximum (s,t)-flow computations. b) We design two compact structures for storing and characterizing all mincuts for all vital edges - (i) an O(m) space DAG for partial and (ii) an O(mn) space structure for complete characterization. To arrive at our results, we develop new techniques, especially a generalization of maxflow-mincut Theorem by Ford and Fulkerson [CJM 1956], which might be of independent interest.

Cite as

Surender Baswana and Koustav Bhanja. Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, & Optimal Sensitivity Oracles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 17:1-17:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baswana_et_al:LIPIcs.ICALP.2024.17,
  author =	{Baswana, Surender and Bhanja, Koustav},
  title =	{{Vital Edges for (s,t)-Mincut: Efficient Algorithms, Compact Structures, \& Optimal Sensitivity Oracles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{17:1--17:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.17},
  URN =		{urn:nbn:de:0030-drops-201601},
  doi =		{10.4230/LIPIcs.ICALP.2024.17},
  annote =	{Keywords: maxflow, vital edges, graph algorithms, structures, st-cuts, sensitivity oracle}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Asymptotically Optimal Colors

Authors: Mohammad Saneian and Soheil Behnezhad

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G, an edge-coloring is an assignment of colors to edges of G such that any two edges sharing an endpoint receive different colors. By Vizing’s celebrated theorem, any graph of maximum degree Δ needs at least Δ and at most (Δ + 1) colors to be properly edge colored. In this paper, we study edge colorings in the streaming setting. The edges arrive one by one in an arbitrary order. The algorithm takes a single pass over the input and must output a solution using a much smaller space than the input size. Since the output of edge coloring is as large as its input, the assigned colors should also be reported in a streaming fashion. The streaming edge coloring problem has been studied in a series of works over the past few years. The main challenge is that the algorithm cannot "remember" all the color assignments that it returns. To ensure the validity of the solution, existing algorithms use many more colors than Vizing’s bound. Namely, in n-vertex graphs, the state-of-the-art algorithm with Õ(n s) space requires O(Δ²/s + Δ) colors. Note, in particular, that for an asymptotically optimal O(Δ) coloring, this algorithm requires Ω(nΔ) space which is as large as the input. Whether such a coloring can be achieved with sublinear space has been left open. In this paper, we answer this question in the affirmative. We present a randomized algorithm that returns an asymptotically optimal O(Δ) edge coloring using Õ(n √{Δ}) space. More generally, our algorithm returns a proper O(Δ^{1.5}/s + Δ) edge coloring with Õ(n s) space, improving prior algorithms for the whole range of s.

Cite as

Mohammad Saneian and Soheil Behnezhad. Streaming Edge Coloring with Asymptotically Optimal Colors. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saneian_et_al:LIPIcs.ICALP.2024.121,
  author =	{Saneian, Mohammad and Behnezhad, Soheil},
  title =	{{Streaming Edge Coloring with Asymptotically Optimal Colors}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.121},
  URN =		{urn:nbn:de:0030-drops-202640},
  doi =		{10.4230/LIPIcs.ICALP.2024.121},
  annote =	{Keywords: Streaming, Edge coloring, Adversarial order}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Decremental Connectivity in Non-Sparse Graphs

Authors: Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on a sparse graph. For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an O(m log (n² / m) + n poly log n)-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n²) edges. Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an Ω(log n/log log n) worst-case time lower bound in the decremental setting [Alstrup, Husfeldt, and Rauhe FOCS'98] as well as an Ω(log n) amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].

Cite as

Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup. Optimal Decremental Connectivity in Non-Sparse Graphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.ICALP.2023.6,
  author =	{Aamand, Anders and Karczmarz, Adam and {\L}\k{a}cki, Jakub and Parotsidis, Nikos and Rasmussen, Peter M. R. and Thorup, Mikkel},
  title =	{{Optimal Decremental Connectivity in Non-Sparse Graphs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.6},
  URN =		{urn:nbn:de:0030-drops-180581},
  doi =		{10.4230/LIPIcs.ICALP.2023.6},
  annote =	{Keywords: decremental connectivity, dynamic connectivity}
}
Document
A Local Search Algorithm for Large Maximum Weight Independent Set Problems

Authors: Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis, Mauricio G.C. Resende, and Quico Spaen

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Motivated by a real-world vehicle routing application, we consider the maximum-weight independent set problem: Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum. Some of the graphs arising in the vehicle routing application are large, having hundreds of thousands of nodes and hundreds of millions of edges. To solve instances of this size, we develop a new local search algorithm, which is a metaheuristic based on the greedy randomized adaptive search (GRASP) framework. This algorithm, named METAMIS, uses a wider range of simple local search operations than previously described in the literature. We introduce data structures that make these operations efficient. A new variant of path-relinking is introduced to escape local optima and so is a new alternating augmenting-path local search move that improves algorithm performance. We compare an implementation of our algorithm with a state-of-the-art publicly available code on public benchmark sets, including some large instances. Our algorithm is, in general, competitive and outperforms this openly available code on large vehicle routing instances of the maximum weight independent set problem. We hope that our results will lead to even better maximum-weight independent set algorithms.

Cite as

Yuanyuan Dong, Andrew V. Goldberg, Alexander Noe, Nikos Parotsidis, Mauricio G.C. Resende, and Quico Spaen. A Local Search Algorithm for Large Maximum Weight Independent Set Problems. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.ESA.2022.45,
  author =	{Dong, Yuanyuan and Goldberg, Andrew V. and Noe, Alexander and Parotsidis, Nikos and Resende, Mauricio G.C. and Spaen, Quico},
  title =	{{A Local Search Algorithm for Large Maximum Weight Independent Set Problems}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.45},
  URN =		{urn:nbn:de:0030-drops-169839},
  doi =		{10.4230/LIPIcs.ESA.2022.45},
  annote =	{Keywords: GRASP, local search, maximum-weight independent set, path-relinking, heuristic, metaheuristic}
}
Document
Collaborative Procrastination

Authors: Aris Anagnostopoulos, Aristides Gionis, and Nikos Parotsidis

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
The problem of inconsistent planning in decision making, which leads to undesirable effects such as procrastination, has been studied in the behavioral-economics literature, and more recently in the context of computational behavioral models. Individuals, however, do not function in isolation, and successful projects most often rely on team work. Team performance does not depend only on the skills of the individual team members, but also on other collective factors, such as team spirit and cohesion. It is not an uncommon situation (for instance, experienced by the authors while working on this paper) that a hard-working individual has the capacity to give a good example to her team-mates and motivate them to work harder. In this paper we adopt the model of Kleinberg and Oren (EC'14) on time-inconsistent planning, and extend it to account for the influence of procrastination within the members of a team. Our first contribution is to model collaborative work so that the relative progress of the team members, with respect to their respective subtasks, motivates (or discourages) them to work harder. We compare the total cost of completing a team project when the team members communicate with each other about their progress, with the corresponding cost when they work in isolation. Our main result is a tight bound on the ratio of these two costs, under mild assumptions. We also show that communication can either increase or decrease the total cost. We also consider the problem of assigning subtasks to team members, with the objective of minimizing the negative effects of collaborative procrastination. We show that whereas a simple problem of forming teams of two members can be solved in polynomial time, the problem of assigning n tasks to n agents is NP-hard.

Cite as

Aris Anagnostopoulos, Aristides Gionis, and Nikos Parotsidis. Collaborative Procrastination. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{anagnostopoulos_et_al:LIPIcs.FUN.2021.2,
  author =	{Anagnostopoulos, Aris and Gionis, Aristides and Parotsidis, Nikos},
  title =	{{Collaborative Procrastination}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.2},
  URN =		{urn:nbn:de:0030-drops-127634},
  doi =		{10.4230/LIPIcs.FUN.2021.2},
  annote =	{Keywords: time-inconsistent planning, computational behavioral science, collaborative work, collaborative environments}
}
Document
Track A: Algorithms, Complexity and Games
Faster Algorithms for All-Pairs Bounded Min-Cuts

Authors: Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis, Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The All-Pairs Min-Cut problem (aka All-Pairs Max-Flow) asks to compute a minimum s-t cut (or just its value) for all pairs of vertices s,t. We study this problem in directed graphs with unit edge/vertex capacities (corresponding to edge/vertex connectivity). Our focus is on the k-bounded case, where the algorithm has to find all pairs with min-cut value less than k, and report only those. The most basic case k=1 is the Transitive Closure (TC) problem, which can be solved in graphs with n vertices and m edges in time O(mn) combinatorially, and in time O(n^{omega}) where omega<2.38 is the matrix-multiplication exponent. These time bounds are conjectured to be optimal. We present new algorithms and conditional lower bounds that advance the frontier for larger k, as follows: - A randomized algorithm for vertex capacities that runs in time {O}((nk)^{omega}). This is only a factor k^omega away from the TC bound, and nearly matches it for all k=n^{o(1)}. - Two deterministic algorithms for edge capacities (which is more general) that work in DAGs and further reports a minimum cut for each pair. The first algorithm is combinatorial (does not involve matrix multiplication) and runs in time {O}(2^{{O}(k^2)}* mn). The second algorithm can be faster on dense DAGs and runs in time {O}((k log n)^{4^{k+o(k)}}* n^{omega}). Previously, Georgiadis et al. [ICALP 2017], could match the TC bound (up to n^{o(1)} factors) only when k=2, and now our two algorithms match it for all k=o(sqrt{log n}) and k=o(log log n). - The first super-cubic lower bound of n^{omega-1-o(1)} k^2 time under the 4-Clique conjecture, which holds even in the simplest case of DAGs with unit vertex capacities. It improves on the previous (SETH-based) lower bounds even in the unbounded setting k=n. For combinatorial algorithms, our reduction implies an n^{2-o(1)} k^2 conditional lower bound. Thus, we identify new settings where the complexity of the problem is (conditionally) higher than that of TC. Our three sets of results are obtained via different techniques. The first one adapts the network coding method of Cheung, Lau, and Leung [SICOMP 2013] to vertex-capacitated digraphs. The second set exploits new insights on the structure of latest cuts together with suitable algebraic tools. The lower bounds arise from a novel reduction of a different structure than the SETH-based constructions.

Cite as

Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis, Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf. Faster Algorithms for All-Pairs Bounded Min-Cuts. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ICALP.2019.7,
  author =	{Abboud, Amir and Georgiadis, Loukas and Italiano, Giuseppe F. and Krauthgamer, Robert and Parotsidis, Nikos and Trabelsi, Ohad and Uzna\'{n}ski, Przemys{\l}aw and Wolleb-Graf, Daniel},
  title =	{{Faster Algorithms for All-Pairs Bounded Min-Cuts}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.7},
  URN =		{urn:nbn:de:0030-drops-105833},
  doi =		{10.4230/LIPIcs.ICALP.2019.7},
  annote =	{Keywords: All-pairs min-cut, k-reachability, network coding, Directed graphs, fine-grained complexity}
}
Document
Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Authors: Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
In this paper we study the dynamic versions of two basic graph problems: Minimum Dominating Set and its variant Minimum Connected Dominating Set. For those two problems, we present algorithms that maintain a solution under edge insertions and edge deletions in time O(Delta * polylog n) per update, where Delta is the maximum vertex degree in the graph. In both cases, we achieve an approximation ratio of O(log n), which is optimal up to a constant factor (under the assumption that P != NP). Although those two problems have been widely studied in the static and in the distributed settings, to the best of our knowledge we are the first to present efficient algorithms in the dynamic setting. As a further application of our approach, we also present an algorithm that maintains a Minimal Dominating Set in O(min(Delta, sqrt{m})) per update.

Cite as

Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic. Dominating Sets and Connected Dominating Sets in Dynamic Graphs. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hjuler_et_al:LIPIcs.STACS.2019.35,
  author =	{Hjuler, Niklas and Italiano, Giuseppe F. and Parotsidis, Nikos and Saulpic, David},
  title =	{{Dominating Sets and Connected Dominating Sets in Dynamic Graphs}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.35},
  URN =		{urn:nbn:de:0030-drops-102741},
  doi =		{10.4230/LIPIcs.STACS.2019.35},
  annote =	{Keywords: Dominating Set, Connected Dominating Set, Dynamic Graph Algorithms}
}
Document
Decremental Data Structures for Connectivity and Dominators in Directed Graphs

Authors: Loukas Georgiadis, Thomas Dueholm Hansen, Giuseppe F. Italiano, Sebastian Krinninger, and Nikos Parotsidis

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We introduce a new dynamic data structure for maintaining the strongly connected components (SCCs) of a directed graph (digraph) under edge deletions, so as to answer a rich repertoire of connectivity queries. Our main technical contribution is a decremental data structure that supports sensitivity queries of the form "are u and v strongly connected in the graph G \ w?", for any triple of vertices u, v, w, while G undergoes deletions of edges. Our data structure processes a sequence of edge deletions in a digraph with $n$ vertices in O(m n log n) total time and O(n^2 log n) space, where m is the number of edges before any deletion, and answers the above queries in constant time. We can leverage our data structure to obtain decremental data structures for many more types of queries within the same time and space complexity. For instance for edge-related queries, such as testing whether two query vertices u and v are strongly connected in G \ e, for some query edge e. As another important application of our decremental data structure, we provide the first nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions. We present an algorithm that processes a sequence of edge deletions in a flow graph in O(m n log n) total time and O(n^2 log n) space. For reducible flow graphs we provide an O(mn)-time and O(m + n)-space algorithm. We give a conditional lower bound that provides evidence that these running times may be tight up to subpolynomial factors.

Cite as

Loukas Georgiadis, Thomas Dueholm Hansen, Giuseppe F. Italiano, Sebastian Krinninger, and Nikos Parotsidis. Decremental Data Structures for Connectivity and Dominators in Directed Graphs. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 42:1-42:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.ICALP.2017.42,
  author =	{Georgiadis, Loukas and Dueholm Hansen, Thomas and Italiano, Giuseppe F. and Krinninger, Sebastian and Parotsidis, Nikos},
  title =	{{Decremental Data Structures for Connectivity and Dominators in Directed Graphs}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{42:1--42:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.42},
  URN =		{urn:nbn:de:0030-drops-74455},
  doi =		{10.4230/LIPIcs.ICALP.2017.42},
  annote =	{Keywords: dynamic graph algorithms, decremental algorithms, dominator tree, strong connectivity under failures}
}
Document
All-Pairs 2-Reachability in O(n^w log n) Time

Authors: Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemyslaw Uznanski

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
In the 2-reachability problem we are given a directed graph G and we wish to determine if there are two (edge or vertex) disjoint paths from u to v, for given pair of vertices u and v. In this paper, we present an algorithm that computes 2-reachability information for all pairs of vertices in O(n^w log n) time, where n is the number of vertices and w is the matrix multiplication exponent. Hence, we show that the running time of all-pairs 2-reachability is only within a log factor of transitive closure. Moreover, our algorithm produces a witness (i.e., a separating edge or a separating vertex) for all pair of vertices where 2-reachability does not hold. By processing these witnesses, we can compute all the edge- and vertex-dominator trees of G in O(n^2) additional time, which in turn enables us to answer various connectivity queries in O(1) time. For instance, we can test in constant time if there is a path from u to v avoiding an edge e, for any pair of query vertices u and v, and any query edge e, or if there is a path from u to v avoiding a vertex w, for any query vertices u, v, and w.

Cite as

Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemyslaw Uznanski. All-Pairs 2-Reachability in O(n^w log n) Time. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 74:1-74:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.ICALP.2017.74,
  author =	{Georgiadis, Loukas and Graf, Daniel and Italiano, Giuseppe F. and Parotsidis, Nikos and Uznanski, Przemyslaw},
  title =	{{All-Pairs 2-Reachability in O(n^w log n) Time}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{74:1--74:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.74},
  URN =		{urn:nbn:de:0030-drops-74510},
  doi =		{10.4230/LIPIcs.ICALP.2017.74},
  annote =	{Keywords: 2-reachability, All Dominator Trees, Directed Graphs, Boolean Matrix Multiplication}
}
Document
Incremental 2-Edge-Connectivity in Directed Graphs

Authors: Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We present an algorithm that can update the 2-edge-connected blocks of a directed graph with n vertices through a sequence of m edge insertions in a total of O(m*n) time. After each insertion, we can answer the following queries in asymptotically optimal time: - Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if v and w are not 2-edge-connected, we can produce in constant time a “witness” of this property, by exhibiting an edge that is contained in all paths from v to w or in all paths from w to v. - Report in O(n) time all the 2-edge-connected blocks of G. This is the first dynamic algorithm for 2-connectivity problems on directed graphs, and it matches the best known bounds for simpler problems, such as incremental transitive closure.

Cite as

Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis. Incremental 2-Edge-Connectivity in Directed Graphs. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.ICALP.2016.49,
  author =	{Georgiadis, Loukas and Italiano, Giuseppe F. and Parotsidis, Nikos},
  title =	{{Incremental 2-Edge-Connectivity in Directed Graphs}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.49},
  URN =		{urn:nbn:de:0030-drops-63292},
  doi =		{10.4230/LIPIcs.ICALP.2016.49},
  annote =	{Keywords: 2-edge connectivity on directed graphs; dynamic graph algorithms; incremental algorithms.}
}
Document
Invited Talk
2-Connectivity in Directed Graphs (Invited Talk)

Authors: Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We survey some recent results on 2-edge and 2-vertex connectivity problems in directed graphs. Despite being complete analogs of the corresponding notions on undirected graphs, in digraphs 2-vertex and 2-edge connectivity have a much richer and more complicated structure. It is thus not surprising that 2-connectivity problems on directed graphs appear to be more difficult than on undirected graphs. For undirected graphs it has been known for over 40 years how to compute all bridges, articulation points, 2-edge- and 2-vertex-connected components in linear time, by simply using depth-first search. In the case of digraphs, however, the very same problems have been much more challenging and required the development of new tools and techniques.

Cite as

Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis. 2-Connectivity in Directed Graphs (Invited Talk). In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{georgiadis_et_al:LIPIcs.ESA.2016.1,
  author =	{Georgiadis, Loukas and Italiano, Giuseppe F. and Parotsidis, Nikos},
  title =	{{2-Connectivity in Directed Graphs}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{1:1--1:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.1},
  URN =		{urn:nbn:de:0030-drops-63451},
  doi =		{10.4230/LIPIcs.ESA.2016.1},
  annote =	{Keywords: 2-edge and 2-vertex connectivity on directed graphs, graph algorithms, dominator trees}
}
  • Refine by Author
  • 9 Parotsidis, Nikos
  • 6 Italiano, Giuseppe F.
  • 5 Georgiadis, Loukas
  • 2 Karczmarz, Adam
  • 1 Aamand, Anders
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Dynamic graph algorithms
  • 3 Mathematics of computing → Graph algorithms
  • 2 Mathematics of computing → Paths and connectivity problems
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Network flows
  • Show More...

  • Refine by Keyword
  • 2 graph algorithms
  • 1 2-edge and 2-vertex connectivity on directed graphs
  • 1 2-edge connectivity on directed graphs; dynamic graph algorithms; incremental algorithms.
  • 1 2-reachability
  • 1 Adversarial order
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 5 2024
  • 2 2016
  • 2 2017
  • 2 2019
  • 1 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail